Effects of Low Dose-Rate Radiation on Cellular Survival

  • Jörgen Carlsson


The experience of external radiotherapy can only to a limited extent be used to understand therapeutic effects of radionuclide therapy. A major difference is that the dose-rate at radionuclide therapy is at least two orders of magnitude lower. Part of this chapter deals with estimates of the necessary dose-rate and exposure time in combination in order to deliver therapeutic effects to tumour cells. It is proposed that combinations of about 0.1–0.2 Gy/h for several days or about 1 Gy/h for at least 1 day is necessary. Such dose-rates can be achieved with the help of cross fire radiation. Effects of radionuclide therapy in terms of apoptosis, cell-cycle blocks and hyperradiosensitivity are also discussed.


Radiat Oncol Biol Phys Bystander Effect Radionuclide Therapy Cellular Survival Beta Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Low dose-rate


Cross-fire amplifying factor


Linear energy transfer




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S teel GG (2002) Basic clinical radiobiology. Hodder Education. London (ISBN 9780340807835).Google Scholar
  2. 2.
    H all EJ, Giaccia AJ (2006) Radiobiology for the radiologist. Chapter 5. Lippincott, Williams & Wilkins. Philadelphia, PA (ISBN 0-7817-4151-3).Google Scholar
  3. 3.
    Dale R, Jones B (2007) Radiobiological modelling in radiation oncology. BIR, the British Institute of radiology, London (ISBN 13978-0-905749-60-0).Google Scholar
  4. 4.
    D illehay LE, Williams JR (1990) Radiobiology of dose-rate patterns achievable in radioimmuno globulin therapy. Front Radiat Ther Oncol 24:96-103.PubMedGoogle Scholar
  5. 5.
    Dale RG (1996) Dose-rate effects in targeted radiotherapy. Phys Med Biol 41(10):1871-1884.CrossRefPubMedGoogle Scholar
  6. 6.
    Murtha AD (2000) Radiobiology of low-dose-rate radiation relevant to radioimmunotherapy. Cancer Biother Radiopharm 15(1):7-14.CrossRefPubMedGoogle Scholar
  7. 7.
    Carlsson J, Forssell Aronsson E, Hietala SO, Stigbrand T, Tennvall J (2003) Tumour therapy with radionuclides: assessment of progress and problems. Radiother Oncol 66(2):107-117.CrossRefPubMedGoogle Scholar
  8. 8.
    Hernandez MC, Knox SJ (2004) Radiobiology of radioimmunotherapy: targeting CD20 B-cell antigen in non-Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys 59(5):1274-1287.PubMedGoogle Scholar
  9. 9.
    M urray D, McEwan AJ (2007) Radiobiology of systemic radiation therapy. Cancer Biother Radiopharm 22(1):1-23.CrossRefPubMedGoogle Scholar
  10. 10.
    Bedford JS, Mitchell JB (1973) Dose-rate effects in synchronous mammalian cells in culture. Radiat Res 54(2):316-327.CrossRefPubMedGoogle Scholar
  11. 11.
    Mitchell JB, Bedford JS, Bailey S (1979) Dose-rate effects in mammalian cells in culture III. Comparison of cell killing and cell proliferation during continuous irradiation for six different cell lines. Radiat Res 79(3):537-551.CrossRefPubMedGoogle Scholar
  12. 12.
    Deschavanne PJ, Fertil B (1996) A review of human cell radiosensitivity in vitro. Int J Radiat Oncol Biol Phys 34(1):251-266.PubMedGoogle Scholar
  13. 13.
    Carlsson J, Eriksson V, Stenerlow B, Lundqvist H (2006) Requirements regarding dose rate and exposure time for killing of tumour cells in beta particle radionuclide therapy. Eur J Nucl Med Mol Imaging 33(10):1185-1195.CrossRefPubMedGoogle Scholar
  14. 14.
    Carlsson J, Hakansson E, Eriksson V, Grawe J, Wester K, Grusell E, Montelius A, Lundqvist H (2003) Early effects of low dose-rate radiation on cultured tumor cells. Cancer Biother Radiopharm 18(4):663-670.CrossRefPubMedGoogle Scholar
  15. 15.
    Joiner MC, Marples B, Lambin P, Short SC, Turesson I (2001) Low-dose hypersensitivity: current status and possible mechanisms. Int J Radiat Oncol Biol Phys 49(2):379-389.CrossRefPubMedGoogle Scholar
  16. 16.
    Mitchell CR, Folkard M, Joiner MC (2002) Effects of exposure to low-dose-rate 60Co gamma rays on human tumor cells in vitro. Radiat Res 158(3):311-318.CrossRefPubMedGoogle Scholar
  17. 17.
    Dillehay LE (1990) A model of cell killing by low-dose-rate radiation including repair of sublethal damage, G2 block, and cell division. Radiat Res 124(2):201-207.CrossRefPubMedGoogle Scholar
  18. 18.
    Wong JY, Williams LE, Demidecki AJ, Wessels BW, Yan XW (1991) Radiobiologic studies comparing Yttrium-90 irradiation and external beam irradiation in vitro. Int J Radiat Oncol Biol Phys 20(4):715-722.PubMedGoogle Scholar
  19. 19.
    Hartman T, Lundqvist H, Westlin JE, Carlsson J (2000) Radiation doses to the cell nucleus in single cells and cells in micrometastases in targeted therapy with 131I labelled ligands or antibodies. Int J Radiat Oncol Biol Phys 46(4):1025-1036.PubMedGoogle Scholar
  20. 20.
    Howell RW, Neti PV (2005) Modeling multicellular response to nonuniform distributions of radioactivity: differences in cellular response to self-dose and cross-dose. Radiat Res 163 (2):216-221.CrossRefPubMedGoogle Scholar
  21. 21.
    Saha GB (2006) Physics and radiobiology of nuclear medicine. Springer. New York (ISBN 9780387307541).Google Scholar
  22. 22.
    Prise KM, Folkard M, Michael BD (2003) A review of the bystander effect and its implications for low-dose exposure. Radiat Prot Dosimetry 104(4):347-355.PubMedGoogle Scholar
  23. 23.
    Hall EJ (2003) The bystander effect. Health Phys 85(1): 31-35.CrossRefPubMedGoogle Scholar
  24. 24.
    Mothersill C, Seymour CB (2004) Radiation-induced bystander effects-implications for cancer. Nat Rev Cancer 4(2):158-164.PubMedGoogle Scholar
  25. 25.
    Mirzaie-Joniani H, Eriksson D, Johansson A, Lofroth PO, Johansson L, Ahlstrom KR, Stigbrand T (2002) Apoptosis in HeLa Hep2 cells is induced by low-dose, low-dose-rate radiation. Radiat Res 158(5):634-640.CrossRefPubMedGoogle Scholar
  26. 26.
    Mirzaie-Joniani H, Eriksson D, Sheikholvaezin A, Johansson A, Lofroth PO, Johansson L, Stigbrand T (2002) Apoptosis induced by low-dose and low-dose-rate radiation. Cancer 94 (4 Suppl):1210-1214.CrossRefPubMedGoogle Scholar
  27. 27.
    Sundberg AL, Blomquist E, Carlsson J, Steffen AC, Gedda L (2003) Cellular retention of radioactivity and increased radiation dose. Model experiments with EGF-dextran. Nucl Med Biol 30(3):303-315.CrossRefPubMedGoogle Scholar
  28. 28.
    O’Donoghue JA, Bardies M, Wheldon TE (1995) Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med 36 (10):1902-1909.PubMedGoogle Scholar
  29. 29.
    Essand M, Gronvik C, Hartman T, Carlsson J (1995) Radioimmunotherapy of prostatic adenocarcinomas: effects of 131I-labelled E4 antibodies on cells at different depth in DU 145 spheroids. Int J Cancer 63(3):387-394.CrossRefPubMedGoogle Scholar
  30. 30.
    Steffen AC, Orlova A, Wikman M, Nilsson FY, Stahl S, Adams GP, Tolmachev V, Carlsson J (2006) Affibody-mediated tumour targeting of HER-2 expressing xenografts in mice. Eur J Nucl Med Mol Imaging 33(6):631-638.CrossRefPubMedGoogle Scholar
  31. 31.
    Weinstein JN, Eger RR, Covell DG, Black CD, Mulshine J, Carrasquillo JA (1987) The pharmacology of monoclonal antibodies. Ann N Y Acad Sci 507:199-210.CrossRefPubMedGoogle Scholar
  32. 32.
    Fujimori K, Covell DG, Fletcher JE, Weinstein JN (1989) Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab’)2, and Fab in tumors. Cancer Res 49:5656-5663.PubMedGoogle Scholar
  33. 33.
    Lindstrom A, Carlsson J (1993) Penetration and binding of epidermal growth factor-dextran conjugates in spheroids of human glioma origin. Cancer Biother 8:145-158.PubMedGoogle Scholar
  34. 34.
    Carlsson J, Gedda L (2006) Penetration of tumor therapy interesting substances in non-vasularized metastases: review of studies in multicellular spheroids. Curr Cancer Ther Rev 2:293-304.CrossRefGoogle Scholar
  35. 35.
    Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res June 15; 61(12):4750-4755.Google Scholar
  36. 36.
    DeNardo SJ, Williams LE, Leigh BR, Wahl RL (2002) Choosing an optimal radioimmunotherapy dose for clinical response. Cancer 94(4 Suppl):1275-1286.CrossRefPubMedGoogle Scholar
  37. 37.
    Witzig TE (2006) Radioimmunotherapy for B-cell non-Hodgkin lymphoma. Best Pract Res Clin Haematol 19(4):655-668.CrossRefPubMedGoogle Scholar
  38. 38.
    Larson SM, Krenning EP (2005) A pragmatic perspective on molecular targeted radionuclide therapy. J Nucl Med 46(Suppl 1):1S-3S.PubMedGoogle Scholar
  39. 39.
    Dikomey E, Brammer I (2000) Relationship between cellular radiosensitivity and non-repaired double-strand breaks studied for different growth states, dose-rates and plating conditions in a normal human fibroblast line. Int J Radiat Biol 76(6):773-781CrossRefPubMedGoogle Scholar
  40. 40.
    Collis SJ, Schwaninger JM, Ntambi AJ, Keller TW, Nelson WG, Dillehay LE, Deweese TL (2004) Evasion of early cellular response mechanisms following low level radiation-induced DNA damage. J Biol Chem 279 (48):49624-49632.CrossRefPubMedGoogle Scholar
  41. 41.
    Chapman JD (2003) Single-hit mechanism of tumour cell killing by radiation. Int J Radiat Biol 79(2):71-81.PubMedGoogle Scholar
  42. 42.
    Verwijnen S, Capello A, Bernard B, van den Aardweg G, Konijnenberg M, Breeman W, Krenning E, de Jong M (2004) Low-dose-rate irradiation by 131I versus high-dose-rate external beam irradiation in the rat pancreatic tumor cell line CA20948. Cancer Biother Radiopharm 19 (3):285-292.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Jörgen Carlsson
    • 1
  1. 1.Unit of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations