Sources and Nature of Atmospheric Aerosols

  • Meinrat O. Andreae
  • Dean A. Hegg
  • Urs Baltensperger


In view of the nonlinear and spatiotemporally complex interactions between aerosols, clouds and precipitation, it is quite inadequate to represent aerosols by the conventional approach of atmospheric pollutant cycles, i.e. by specifying sources, burdens and sinks in terms of masses of particular aerosol components or “species”. The basic information required for modeling the role of aerosols in cloud and precipitation processes is the 4-D distribution of the number concentration of particles that can be activated at the supersaturations occurring in clouds (cloud condensation nuclei, CCN) or that can initiate the formation of ice particles, especially at temperatures above the level of homogeneous freezing of cloud droplets (ice nuclei, IN). This information is difficult or impossible to derive from conventional studies of aerosol cycles, such as those that formed the basis of the section on aerosol sources and burdens in the IPCC-TAR report (Penner et al. 2001). Several problems present themselves:


Burning Cellulose Sulphide Europe Ozone 


  1. Heintzenberg, J., K. Okada, and J. Strom, On the composition of non-volatile material in upper tropospheric aerosols and cirrus crystals, Atmos. Res., 41, 81–88, 1996.Google Scholar
  2. Kajii, Y., S. Kato, D.G. Streets, N.Y. Tsai, A. Shvidenko, S. Nilsson, I. McCallum, N.P. Minko, N. Abushenko, D. Altyntsev, and T.V. Khodzer, Boreal forest fires in Siberia in 1998: Estimation of area burned and emissions of pollutants by advanced very high resolution radiometer satellite data, J. Geophys. Res., 107, 4745, doi:10.1029/2001JD001078, 2002.Google Scholar
  3. Mikhailov, E., S. Vlasenko, R. Niessner, and U. Pöschl, Interaction of aerosol particles composed of protein and salts with water vapor: Hygroscopic growth and microstructural rearrangement, Atmos. Chem. Phys., 4, 323–350, 2004.Google Scholar
  4. Zhang, Q., C.O. Stanier, M.R. Canagaratna, J.T. Jayne, D.R. Worsnop, S.N. Pandis, and J.L. Jimenez, Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectrometry, Environ. Sci. Technol., 38, 4797–4809, 2004a.Google Scholar
  5. Gill, P.S., T.E. Graedel, and C.J. Weschler, Organic films on atmospheric aerosol-particles, fog droplets, cloud droplets, raindrops, and snowflakes, Rev. Geophys., 21, 903–920, 1983.Google Scholar
  6. Kim, Y.J., H. Sievering, J. Boatman, D. Wellman, and A. Pszenny, Aerosol size distribution and aerosol water content measurements during Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange, J. Geophys. Res., 100, 23,027–23,038, 1995.Google Scholar
  7. Vali, G., M. Christensen, R.W. Fresch, E.L. Galyan, L.R. Maki, and R.C. Schnell, Biogenic ice nuclei. II: Bacterial sources, J.Atmos. Sci., 33, 1565–1570, 1976.Google Scholar
  8. Schaap, M., H. Van Der Gon, F.J. Dentener, A.J.H. Visschedijk, M. Van Loon, H.M. ten Brink, J.P. Putaud, B. Guillaume, C. Liousse, and P.J.H. Builtjes, Anthropogenic black carbon and fine aerosol distribution over Europe, J. Geophys. Res., 109, D18207, doi:10.1029/2003JD004330, 2004.Google Scholar
  9. Tsigaridis, K., J. Lathière, M. Kanakidou, and D.A. Hauglustaine, Naturally driven variability in the global secondary organic aerosol over a decade, Atmos. Chem. Phys., 5, 1891–1904, 2005.Google Scholar
  10. Chuang, P.Y., D.R. Collins, H. Pawlowska, J.R. Snider, H.H. Jonsson, J.L. Brenguier, R.L. Flagan, and J.H. Seinfeld, CCN measurements during ACE-2 and their relationship to cloud microphysical properties, Tellus, 52B, 843–867, 2000.Google Scholar
  11. Hudson, J.G., and X. Da, Volatility and size of cloud condensation nuclei, J. Geophys. Res., 101, 4435–4442, 1996.Google Scholar
  12. Van der Werf, G.R., J.T. Randerson, J. Collatz, and L. Giglio, Carbon emissions from fires in tropical and subtropical ecosystems, Global Change Biology., 9, 547–562, 2003.Google Scholar
  13. Andreae, M.O., Climatic effects of changing atmospheric aerosol levels, in World Survey of Climatology. Volume 16: Future Climates of the World, edited by A. Henderson-Sellers, pp. 341–392, Elsevier, Amsterdam, 1995.Google Scholar
  14. Berglen, T.F., T.K. Berntsen, I.S.A. Isaksen, and J.K. Sundet, A global model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle, J. Geophys. Res., 109, D19310, doi:10.1029/2003JD003948, 2004.Google Scholar
  15. Pirjola, L., C.D. O'Dowd, I.M. Brooks, and M. Kulmala, Can new particle formation occur in the clean marine boundary layer? J. Geophys. Res., 105, 26,531–26,546, 2000.Google Scholar
  16. Streets, D.G., S. Gupta, S.T. Waldhoff, M.Q. Wang, T.C. Bond, and B. Yiyun, Black carbon emissions in China, Atmos. Environ., 35, 4281–4296, 2001.Google Scholar
  17. Shulman, M.L., M.C. Jacobson, R.J. Charlson, R.E. Synovec, and T.E. Young, Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets, Geophys. Res. Lett., 23, 277–280, 1996.Google Scholar
  18. Hering, S., A. Eldering, and J.H. Seinfeld, Bimodal character of accumulation mode aerosol mass distributions in Southern California, Atmos. Environ., 31, 1–11, 1997.Google Scholar
  19. Johnson, D.W., S.R. Osborne, R. Wood, K. Suhre, P.K. Quinn, T. Bates, M.O. Andreae, K.J. Noone, P. Glantz, B. Bandy, J. Rudolph, and C. O'Dowd, Observations of the evolution of the aerosol, cloud and boundary-layer characteristics during the 1st ACE-2 Lagrangian experiment, Tellus, 52B, 348–374, 2000.Google Scholar
  20. Cachier, H., C. Liousse, M.H. Pertuisot, A. Gaudichet, F. Echalar, and J.P. Lacaux, African fire particulate emission and atmospheric influence, in Biomass Burning and Global Change, edited by J.S. Levine, pp. 428–440, MIT Press, Cambridge, MA, 1996.Google Scholar
  21. Andreae, M.O., H. Berresheim, T.W. Andreae, M.A. Kritz, T.S. Bates, and J.T. Merrill, Vertical distribution of dimethylsulfide, sulfur dioxide, aerosol ions, and radon over the northeast Pacific Ocean, J. Atmos. Chem., 6, 149–173, 1988.Google Scholar
  22. Heisler, S.L., S.K. Friedlan, and R.B. Husar, Relationship of smog aerosol size and chemical element distributions to source characteristics, Atmos. Environ., 7, 633–649, 1973.Google Scholar
  23. Hagen, D.E., J. Podzimek, and M.B. Trueblood, Upper-tropospheric aerosol sampled during project FIRE IFO II, J. Atmos. Sci., 52, 4196–4209, 1995.Google Scholar
  24. Strom, J., and S. Ohlsson, In situ measurements of enhanced crystal number densities in cirrus clouds caused by aircraft exhaust, J. Geophys. Res., 103, 11,355–11,361, 1998.Google Scholar
  25. Fitzgerald, J.W., Dependence of supersaturation spectrum of CCN on aerosol size distribution and composition, J. Atmos. Sci., 30, 628–634, 1973.Google Scholar
  26. Wiedensohler, A., and D.S. Covert, Number concentrations and size distributions of atmospheric aerosol under baseline condition at Cape Grim, J. Aerosol Sci., 27, S99–S100, 1996.Google Scholar
  27. Hoppel, W.A., G.M. Frick, and R.E. Larson, Effect of nonprecipitating clouds on the aerosol size distribution in the marine boundary layer, Geophys. Res. Lett., 13, 125–128, 1986.Google Scholar
  28. Raemdonck, H., W. Maenhaut, and M.O. Andreae, Chemistry of marine aerosol over the tropical equatorial Pacific, J. Geophys. Res., 91, 8623–8636, 1986.Google Scholar
  29. Matthias-Maser, S., J. Brinkmann, and W. Schneider, The size distribution of marine atmospheric aerosol with regard to primary biological aerosol particles over the South Atlantic Ocean, Atmos. Environ., 33, 3569–3575, 1999.Google Scholar
  30. Ervens, B., M. Cubison, E. Andrews, G. Feingold, J.A. Ogren, J.L. Jimenez, P. DeCarlo, and A. Nenes, Prediction of cloud condensation nucleus number concentration using measurements of aerosol size distributions and composition and light scattering enhancement due to humidity, J. Geophys. Res., 112, D10S32, doi:10.1029/2006JD007426, 2007.Google Scholar
  31. Barth, M.C., and A.T. Church, Regional and global distributions and lifetimes of sulfate aerosols from Mexico city and southeast China, J. Geophys. Res., 104, 30,231–30,239, 1999.Google Scholar
  32. Streets, D.G., and S.T. Waldhoff, Present and future emissions of air pollutants in China: SO2, NOx, and CO, Atmos. Environ., 34, 363–374, 2000.Google Scholar
  33. Hudson, J.G., and Y.H. Xie, Vertical distributions of cloud condensation nuclei spectra over the summertime northeast Pacific and Atlantic Oceans, J. Geophys. Res., 104, 30,219–30,229, 1999.Google Scholar
  34. Weingartner, E., H. Burtscher, and U. Baltensperger, Hygroscopic properties of carbon and diesel soot particles, Atmos. Environ., 31, 2311–2327, 1997.Google Scholar
  35. Anttila, T., and V.M. Kerminen, Influence of organic compounds on the cloud droplet activation: A model investigation considering the volatility, water solubility, and surface activity of organic matter, J. Geophys. Res., 107, 4662, doi:10.1029/2001JD001482, 2002.Google Scholar
  36. Shinozuka, Y., A.D. Clarke, S.G. Howell, V.N. Kapustin, and B.J. Huebert, Sea-salt vertical profiles over the Southern and tropical Pacific oceans: Microphysics, optical properties, spatial variability, and variations with wind speed, J. Geophys. Res., 109, D24201, doi:10.1029/2004JD004975, 2004.Google Scholar
  37. Clegg, S.L., J.H. Seinfeld, and P. Brimblecombe, Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds, J. Aerosol Sci., 32, 713–738, 2001.Google Scholar
  38. Smith, D.M., M.S. Akhter, J.A. Jassim, C.A. Sergides, W.F. Welch, and A.R. Chughtai, Studies of the structure and reactivity of soot, Aerosol Sci. Tech., 10, 311–325, 1989.Google Scholar
  39. Leck, C., M. Tjernström, P. Matrai, E. Swietlicki, and K. Bigg, Can marine micro-organisms influence melting of the Arctic pack ice? Eos Trans. AGU, 85, 25–36, 2004.Google Scholar
  40. Jacobson, M.Z., and J.H. Seinfeld, Evolution of nanoparticle size and mixing state near the point of emission, Atmos. Environ., 38, 1839–1850, 2004.Google Scholar
  41. Feingold, G., W.R. Cotton, S.M. Kreidenweis, and J.T. Davis, The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties, J. Atmos. Sci., 56, 4100–4117, 1999.Google Scholar
  42. Sverdrup, G.M., K.T. Whitby, and W.E. Clark, Characterization of California aerosols. 2: Aerosol size distribution measurements in Mojave Desert, Atmos. Environ., 9, 483–494, 1975.Google Scholar
  43. Murphy, D.M., D.S. Thomson, A.M. Middlebrook, and M.E. Schein, In situ single-particle characterization at Cape Grim, J. Geophys. Res., 103, 16,485–16,491, 1998b.Google Scholar
  44. Dusek, U., G.P. Frank, L. Hildebrandt, J. Curtius, J. Schneider, S. Walter, D. Chand, F. Drewnick, S. Hings, D. Jung, S. Borrmann, M.O. Andreae, Size matters more than chemistry in controlling which aerosol particles can nucleate cloud droplets, Science, 312, 1375–1378, 2006.Google Scholar
  45. Radke, L.F., D.A. Hegg, J.H. Lyons, C.A. Brock, P.V. Hobbs, R. Weiss, and R. Rasmussen, Airborne measurements on smokes from biomass burning, in Aerosols and Climate, edited by P.V. Hobbs, and M.P. McCormick, pp. 411–422, A. Deepak Publishing, Hampton, VA, 1988.Google Scholar
  46. Noble, C.A., and K.A. Prather, Real-time measurement of correlated size and composition profiles of individual atmospehric aerosol particles, Environ. Sci. Tech., 30, 2667–2680, 1996.Google Scholar
  47. Raes, F., T. Bates, F. McGovern, and M. van Liedekerke, The 2nd Aerosol Characterization Experiment (ACE-2): General overview and main results, Tellus, 52B, 111–125, 2000.Google Scholar
  48. Artaxo, P., W. Maenhaut, H. Storms, and R.V. Grieken, Aerosol characteristics and sources for the Amazon Basin during the wet season, J. Geophys. Res., 95, 16,971–16,986, 1990.Google Scholar
  49. Szyrmer, W., and I. Zawadzki, Biogenic and anthropogenic sources of ice-forming nuclei: A review, Bull. Am. Meteorol. Soc., 78, 209–228, 1997.Google Scholar
  50. John, W., S.M. Wall, J.L. Ondo, and W. Winklmayr, Modes in the size distributions of atmospheric inorganic aerosol, Atmosp. Environ. Part a-General Topics, 24, 2349–2359, 1990.Google Scholar
  51. Andreae, M.O., and P.J. Crutzen, Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052–1056, 1997.Google Scholar
  52. Tang, I.N., and H.R. Munkelwitz, Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance, J. Geophys. Res., 99, 18,801–18,808, 1994.Google Scholar
  53. Andreae, M.O., W. Elbert, R. Gabriel, D.W. Johnson, S. Osborne, and R. Wood, Soluble ion chemistry of the atmospheric aerosol and SO2 concentrations over the eastern North Atlantic during ACE-2, Tellus, 52B, 1066–1087, 2000.Google Scholar
  54. Charlson, R.J., J.E. Lovelock, M.O. Andreae, and S.G. Warren, Oceanic phytoplankton, atmospheric sulphur, cloud albedo, and climate, Nature, 326, 655–661, 1987.Google Scholar
  55. Tervahattu, H., J. Juhanoja, and K. Kupiainen, Identification of an organic coating on marine aerosol particles by TOF-SIMS, J. Geophys. Res., 107, 4319, doi:10.1029/2001JD001403, 2002b.Google Scholar
  56. Bigg, E.K., Discrepancy between observation and prediction of concentrations of cloud condensation nuclei, Atmos. Res., 20, 81–86, 1986.Google Scholar
  57. Broekhuizen, K., R.Y.W. Chang, W.R. Leaitch, S.M. Li, and J.P.D. Abbatt, Closure between measured and modeled Cloud Condensation Nuclei (CCN) using size-resolved aerosol compositions in downtown Toronto, Atmos. Chem. Phys., 6, 2513–2524, 2006.Google Scholar
  58. Shrestha, A.B., C.P. Wake, and J.E. Dibb, Chemical composition of aerosol and snow in the high Himalaya during the summer monsoon season, Atmos. Environ., 31, 2815–2826, 1997.Google Scholar
  59. Tsigaridis, K., and M. Kanakidou, Global modelling of secondary organic aerosol in the troposphere: A sensitivity analysis, Atmos. Chem. Phys., 3, 1849–1869, 2003.Google Scholar
  60. Castro, A., J.L. Marcos, J. Dessens, J.L. Sanchez, and R. Fraile, Concentration of ice nuclei in continental and maritime air masses in Leon (Spain), Atmos. Res., 48, 155–167, 1998.Google Scholar
  61. Li-Jones, X., and J.M. Prospero, Variations in the size distribution of non-sea-salt sulfate aerosol in the marine boundary layer at Barbados: Impact of African dust, J. Geophys. Res., 103, 16,073–16,084, 1998.Google Scholar
  62. Feingold, G., and P.Y. Chuang, Analysis of the influence of film-forming compounds on droplet growth: Implications for cloud microphysical processes and climate, J. Atmos. Sci., 59, 2006–2018, 2002.Google Scholar
  63. Radke, L.F., D.A. Hegg, P.V. Hobbs, J.D. Nance, J.H. Lyons, K.K. Laursen, R.E. Weiss, P.J. Riggan, and D.E. Ward, Particulate and trace gas emissions from large biomass fires in North America, in Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, edited by J.S. Levine, pp. 209–224, MIT Press, Cambridge, MA, 1991.Google Scholar
  64. Kulmala, M., U. Pirjola, and J.M. Makela, Stable sulphate clusters as a source of new atmospheric particles, Nature, 404, 66–69, 2000.Google Scholar
  65. Luo, C., N.M. Mahowald, and J. del Corral, Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution, J. Geophys. Res., 108, 4447, doi:10.1029/2003JD003483, 2003.Google Scholar
  66. Mahowald, N.M., and C. Luo, A less dusty future? Geophys. Res. Lett., 30, 1903, doi:10.1029/2003GL017880, 2003.Google Scholar
  67. Nilsson, E.D., Ü. Rannik, E. Swietlicki, C. Leck, P.P. Aalto, J. Zhou, and M. Norman, Turbulent aerosol fluxes over the Arctic Ocean 2. Wind-driven sources from the sea, J. Geophys. Res., 106, 32,139–32,154, 2001.Google Scholar
  68. Gysel, M., E. Weingartner, and U. Baltensperger, Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols, Environ. Sci. Technol., 36, 63–68, 2002.Google Scholar
  69. Prospero, J.M., P. Ginoux, O. Torres, S.E. Nicholson, and T.E. Gill, Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys., 40, 1002, doi:10.1029/2000RG000095, 2002.Google Scholar
  70. Chowdhury, Z., L.S. Hughes, and L.G. Salmon, Atmospheric particle size and composition measurements to support light extinction calculations over the Indian Ocean, J. Geophys. Res., 106, 28,597–28,605, 2001.Google Scholar
  71. Chung, S.H., and J.H. Seinfeld, Global distribution and climate forcing of carbonaceous aerosols, J. Geophys. Res., 107, 4407, doi:10.1029/2001JD001397, 2002.Google Scholar
  72. Liu, P.S.K., W.R. Leaitch, C.M. Banic, and S.M. Li, Aerosol observations at Chebogue Point during the 1993 North Atlantic Regional Experiment: Relationships among cloud condensation nuclei, size distribution, and chemistry, J. Geophys. Res., 101, 28,971–28,990, 1996.Google Scholar
  73. Malm, W.C., L.T. Sisler, D. Kaufman, R.A. Eldred, and T.A. Cahill, Spatial and seasonal trends in particle concentrations and optical extinction in the United States, J. Geophys. Res., 99, 1347–1370, 1994.Google Scholar
  74. Velders, G.J.M., Heijboer, L.C, Kelder, H., The simulation of the transport of aircraft emissions by a 3-dimensional global-model, Annales Geophysicae-Atmospheres Hydrospheres and Space Sci., 12(5), 385–393, 1994Google Scholar
  75. Gong, S.L., A parameterization of sea-salt aerosol source function for sub- and super-micron particles, Global Biogeochem. Cycles, 17, 1097, doi:10.1029/2003GB002079, 2003.Google Scholar
  76. Bauer, H., H. Giebl, R. Hitzenberger, A. Kasper-Giebl, G. Reischl, F. Zibuschka, and H. Puxbaum, Airborne bacteria as cloud condensation nuclei, J. Geophys. Res., 108, 4658, doi:10.1029/2003JD003545, 2003.Google Scholar
  77. Duce, R., Distributions and fluxes of mineral aerosol, in Aerosol Forcing of Climate, edited by R.J. Charlson, and J. Heintzenberg, pp. 43–72, Wiley, Chichester, UK, 1995.Google Scholar
  78. Roberts, G.C., P. Artaxo, J. Zhou, E. Swietlicki, and M.O. Andreae, Sensitivity of CCN spectra on chemical and physical properties of aerosol: A case study from the Amazon Basin, J. Geophys. Res., 107, 8070, doi:10.1029/2001JD000583, 2002.Google Scholar
  79. Stier, P., J. Feichter, S. Kinne, S. Kloster, E. Vignati, J. Wilson, L. Ganzeveld, I. Tegen, M. Werner, Y. Balkanski, M. Schulz, O. Boucher, A. Minikin, and A. Petzold, The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125–1156, 2005.Google Scholar
  80. Junge, C.E., Air Chemistry and Radioactivity, Academic Press, New York, 382 p., 1963.Google Scholar
  81. Grini, A., G. Myhre, J.K. Sundet, and I.S.A. Isaksen, Modeling the annual cycle of sea salt in the global 3D model Oslo CTM2: Concentrations, fluxes, and radiative impact, J. Clim., 15, 1717–1730, 2002.Google Scholar
  82. Facchini, M.C., S. Decesari, M. Mircea, S. Fuzzi, and G. Loglio, Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition, Atmos. Environ., 34, 4853–4857, 2000.Google Scholar
  83. Michel, C., C. Liousse, J.M. Grégoire, K. Tansey, G.R. Carmichael, and J.H. Woo, Biomass burning emission inventory from burnt area data given by the SPOT-VEGETATION system in the frame of TRACE-P and ACE-Asia campaigns, J. Geophys. Res., 110, D09304, doi:10.1029/2004JD005461, 2005.Google Scholar
  84. Limbeck, A., M. Kulmala, and H. Puxbaum, Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles, Geophys. Res. Lett., 30, 1996, doi:10.1029/2003GL017738, 2003.Google Scholar
  85. Tegen, I., Modeling the mineral dust aerosol cycle in the climate system, Quaternary Sci. Rev., 22, 1821–1834, 2003.Google Scholar
  86. Saxena, P., and L.M. Hildemann, Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57–109, 1996.Google Scholar
  87. Weingartner, E., S. Nyeki, and U. Baltensperger, Seasonal and diurnal variation of aerosol size distributions (10<D<750 nm) at a high-alpine site (Jungfraujoch 3580 m asl), J. Geophys. Res., 104, 26,809–26,820, 1999.Google Scholar
  88. Andreae, M.O., and P. Merlet, Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15, 955–966, 2001.Google Scholar
  89. Snider, J.R., and J.L. Brenguier, Cloud condensation nuclei and cloud droplet measurements during ACE-2, Tellus, 52B, 828–842, 2000.Google Scholar
  90. Sun, J.M., and P.A. Ariya, Atmospheric organic and bio-aerosols as Cloud Condensation Nuclei (CCN): A review, Atmos. Environ., 40, 795–820, 2006.Google Scholar
  91. Cavalli, F., M.C. Facchini, S. Decesari, M. Mircea, L. Emblico, S. Fuzzi, D. Ceburnis, Y.J. Yoon, C.D. O'Dowd, J.P. Putaud, and A. Dell'Acqua, Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic, J. Geophys. Res., 109, D24215, doi:10.1029/2004JD005137, 2004.Google Scholar
  92. Bates, T.S., D.J. Coffman, D.S. Covert, and P.K. Quinn, Regional marine boundary layer aerosol size distributions in the Indian, Atlantic, and Pacific Oceans: A comparison of INDOEX measurements with ACE-1, ACE-2, and Aerosols99, J. Geophys. Res., 107, 8026, doi:10.1029/2001JD001174, 2002.Google Scholar
  93. Metzger, S., F. Dentener, S. Pandis, and J. Lelieveld, Gas/aerosol partitioning: 1. A computationally efficient model, J. Geophys. Res., 107, 4312, doi:10.1029/2001JD001102, 2002b.Google Scholar
  94. Leaitch, W.R., J.W. Bottenheim, T.A. Biesenthal, S.M. Li, P.S.K. Liu, K. Asalian, H. Dryfhout-Clark, F. Hopper, and F. Brechtel, A case study of gas-to-particle conversion in an eastern Canadian forest, J. Geophys. Res., 104, 8095–8111, 1999.Google Scholar
  95. Hao, W.H., M.H. Liu, M. Lorenzini, K.D. Singh, and D.E. Ward, Spatial distribution of tropical biomass burning in 1990 with 1°x1° resolution, in Biomass Burning and Global Change, edited by J.S. Levine, MIT Press, Cambridge, MA, 1996.Google Scholar
  96. Hoppel, W.A., G.M. Frick, J.W. Fitzgerald, and B.J. Wattle, A cloud chamber study of the effect that nonprecipitating water clouds have on the aerosol size distribution, Aerosol Sci. and Tech., 20, 1–30, 1994.Google Scholar
  97. Chen, Y.Z., N. Shah, F.E. Huggins, G.P. Huffman, W.P. Linak, and C.A. Miller, Investigation of primary fine particulate matter from coal combustion by computer-controlled scanning electron microscopy, Fuel Process. Technol., 85, 743–761, 2004.Google Scholar
  98. Wise, M.E., J.D. Surratt, D.B. Curtis, J.E. Shilling, and M.A. Tolbert, Hygroscopic growth of ammonium sulfate/dicarboxylic acids, J. Geophys. Res., 108, 4638, doi:10.1029/2003JD003775, 2003.Google Scholar
  99. Malm, W.C., and S.M. Kreidenweis, The effects of models of aerosol hygroscopicity on the apportionment of extinction, Atmos. Environ., 31, 1965–1976, 1997.Google Scholar
  100. Gao, S., N.L. Ng, M. Keywood, V. Varutbangkul, R. Bahreini, A. Nenes, J.W. He, K.Y. Yoo, J.L. Beauchamp, R.P. Hodyss, R.C. Flagan, and J.H. Seinfeld, Particle phase acidity and oligomer formation in secondary organic aerosol, Environ. Sci. Technol., 38, 6582–6589, 2004.Google Scholar
  101. Guyon, P., G.P. Frank, M. Welling, D. Chand, P. Artaxo, L. Rizzo, G. Nishioka, O. Kolle, H. Fritsch, M.A.F. Silva Dias, L.V. Gatti, A.M. Cordova, and M.O. Andreae, Airborne measurements of trace gases and aerosol particle emissions from biomass burning in Amazonia, Atmos. Chem. Phys., 5, 2989–3002, 2005.Google Scholar
  102. Yevich, R., and J.A. Logan, An assessment of biofuel use and burning of agricultural waste in the developing world, Global Biogeochem. Cycles, 17, 1095, doi:10.1029/2002GB001952, 2003.Google Scholar
  103. Novakov, T., and C.E. Corrigan, Cloud condensation nucleus activity of the organic component of biomass smoke particles, Geophys. Res. Lett., 23, 2141–2144, 1996.Google Scholar
  104. Bond, T.C., D.S. Covert, J.C. Kramlich, T.V. Larson, and R.J. Charlson, Primary particle emissions from residential coal burning: Optical properties and size distributions, J. Geophys. Res., 107, 8347, doi:10.1029/2001JD000571, 2002.Google Scholar
  105. Yin, Y., S. Wurzler, Z. Levin, and T.G. Reisin, Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties, J. Geophys. Res., 107, 4724, doi:10.1029/2001JD001544, 2002.Google Scholar
  106. Kinne, S., M. Schulz, C. Textor, S. Guibert, Y. Balkanski, S.E. Bauer, T. Berntsen, T.F. Berglen, O. Boucher, M. Chin, W. Collins, F. Dentener, T. Diehl, R. Easter, J. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, M. Herzog, L. Horowitz, I. Isaksen, T. Iversen, A. Kirkevåg, S. Kloster, D. Koch, J.E. Kristjansson, M. Krol, A. Lauer, J.F. Lamarque, G. Lesins, X. Liu, U. Lohmann, V. Montanaro, G. Myhre, J.E. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier, T. Takemura, and X. Tie, An AeroCom initial assessment – Optical properties in aerosol component modules of global models, Atmos. Chem. Phys., 6, 1815–1834, 2006.Google Scholar
  107. Adams, P.J., J.H. Seinfeld, and D.M. Koch, Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model, J. Geophys. Res., 104, 13,791–13,823, 1999.Google Scholar
  108. Jacobson, M.Z., Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695–697, 2001.Google Scholar
  109. Cantrell, W., G. Shaw, G.R. Cass, Z. Chowdhury, L.S. Hughes, K.A. Prather, S.A. Guazzotti, and K.R. Coffee, Closure between aerosol particles and cloud condensation nuclei at Kaashidhoo Climate Observatory, J. Geophys. Res., 106, 28,711–28,718, 2001.Google Scholar
  110. Seinfeld, J.H., and S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 1326 p., John Wiley, New York, 1998.Google Scholar
  111. Reid, J.S., P.V. Hobbs, R.J. Ferek, D.R. Blake, J.V. Martins, M.R. Dunlap, and C. Liousse, Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil, J. Geophys. Res., 103, 32,059–32,080, 1998.Google Scholar
  112. Brooks, S.D., P.J. DeMott, and S.M. Kreidenweis, Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate, Atmos. Environ., 38, 1859–1868, 2004.Google Scholar
  113. Chan, M.N., M.Y. Choi, N.L. Ng, and C.K. Chan, Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: Amino acids and biomass burning derived organic species, Environ. Sci. Technol., 39, 1555–1562, 2005.Google Scholar
  114. Maring, H., D.L. Savoie, M.A. Izaguirre, L. Custals, and J.S. Reid, Mineral dust aerosol size distribution change during atmospheric transport, J. Geophys. Res., 108, 8592, doi:10.1029/2002JD002536, 2003.Google Scholar
  115. Gabric, A.J., R. Simo, R.A. Cropp, A.C. Hirst, and J. Dachs, Modeling estimates of the global emission of dimethylsulfide under enhanced greenhouse conditions, Global Biogeochem. Cycles., 18, GB2014, doi:10.1029/2003GB002183, 2004.Google Scholar
  116. Matsumoto, K., H. Tanaka, I. Nagao, and Y. Ishizaka, Contribution of particulate sulfate and organic carbon to cloud condensation nuclei in the marine atmosphere, Geophys. Res. Lett., 24, 655–658, 1997.Google Scholar
  117. Liousse, C., J.E. Penner, J.J. Walton, H. Eddleman, C. Chuang, and H. Cachier, Modeling biomass burning aerosols, in Biomass Burning and Global Change, edited by J.S. Levine, pp. 492–508, MIT Press, Cambridge, MA, 1996b.Google Scholar
  118. Novakov, T., and J.E. Penner, Large contribution of organic aerosols to cloud-condensation-nuclei concentrations, Nature, 365, 823–826, 1993.Google Scholar
  119. Gelencsér, A., Carbonaceous aerosol. Dordrecht, Netherlands, Springer, 350 pp. 350, 2004.Google Scholar
  120. Kumar, P.P., K. Broekhuizen, and J.P.D. Abbatt, Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble species, Atmos. Chem. Phys., 3, 509–520, 2003.Google Scholar
  121. Hoelzemann, J.J., M.G. Schultz, G.P. Brasseur, C. Granier, and M. Simon, Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data, J. Geophys. Res., 109, D14S04, doi:10.1029/2003JD003666, 2004.Google Scholar
  122. Cantrell, W., G. Shaw, C. Leck, L. Granat, and H. Cachier, Relationships between cloud condensation nuclei spectra and aerosol particles on a south-north transect of the Indian Ocean, J. Geophys. Res., 105, 15,313–15,320, 2000.Google Scholar
  123. Campuzano-Jost, P., C.D. Clark, H. Maring, D.S. Covert, S. Howell, V. Kapustin, K.A. Clarke, E.S. Saltzman, and A.J. Hynes, Near-real-time measurement of sea salt aerosol during the SEAS campaign: Comparison of emission-based sodium detection with an aerosol volatility technique, J. Atmos. Ocean. Technol., 20, 1421–1430, 2003.Google Scholar
  124. Hansen, A.R., and K.D. Beyer, Experimentally determined thermochemical properties of the malonic acid/water system: Implications for atmospheric aerosols, J. Phys. Chem. A., 108, 3457–3466, 2004.Google Scholar
  125. Ito, A., and J.E. Penner, Global estimates of biomass burning emissions based on satellite imagery for the year 2000, J. Geophys. Res., 109, D14S05, doi:10.1029/2003JD004423, 2004.Google Scholar
  126. Liousse, C., J.E. Penner, C. Chuang, J.J. Walton, H. Eddleman, and H. Cachier, A global three-dimensional model study of carbonaceous aerosols, J. Geophys. Res., 101, 19,411–19,432, 1996a.Google Scholar
  127. Brechtel, F.J., S.M. Kreidenweis, and H.B. Swan, Air mass characteristics, aerosol particle number concentrations, and number size distributions at Macquarie Island during the First Aerosol Characterization Experiment (ACE 1), J. Geophys. Res., 103, 16,351–16,367, 1998.Google Scholar
  128. Weingartner, E., M. Gysel, and U. Baltensperger, Hygroscopicity of aerosol particles at low temperatures. 1. New low-temperature H-TDMA instrument: Setup and first applications, Environ. Sci. Technol., 36, 55–62, 2002.Google Scholar
  129. Cziczo, D.J., D.M. Murphy, P.K. Hudson, and D.S. Thomson, Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE, J. Geophys. Res., 109, D04201, doi:10.1029/2003JD004032, 2004a.Google Scholar
  130. Pruppacher, H.R., and J.D. Klett, Microphysics of Clouds and Precipitation, pp. 954, Reidel, Dordrecht, 1997.Google Scholar
  131. Hobbs, P.V., and L.F. Radke, Cloud condensation nuclei from a simulated forest fire, Science, 163, 279–280, 1969.Google Scholar
  132. Adams, P.J., and J.H. Seinfeld, Disproportionate impact of particulate emissions on global cloud condensation nuclei concentrations, Geophys. Res. Lett., 30, 1239, doi:10.1029/2002GL016303, 2003.Google Scholar
  133. Miller, R.L., I. Tegen, and J. Perlwitz, Surface radiative forcing by soil dust aerosols and the hydrologic cycle, J. Geophys. Res., 109, D04203, doi:10.1029/2003JD004085, 2004.Google Scholar
  134. Seinfeld, J.H., and J.F. Pankow, Organic atmospheric particulate material, Annu. Rev. Phy. Chem., 54, 121–140, 2003.Google Scholar
  135. Field, P.R., O. Mohler, P. Connolly, M. Kramer, R. Cotton, A.J. Heymsfield, H. Saathoff, and M. Schnaiter, Some ice nucleation characteristics of Asian and Saharan desert dust, Atmos. Chem. Phys., 6, 2991–3006, 2006Google Scholar
  136. Baltensperger, U., N. Streit, E. Weingartner, S. Nyeki, A.S.H. Prevot, R. Van Dingenen, A. Virkkula, J.P. Putaud, A. Even, H. ten Brink, A. Blatter, A. Neftel, and H.W. Gaggeler, Urban and rural aerosol characterization of summer smog events during the PIPAPO field campaign in Milan, Italy, J. Geophys. Res., 107, 8193, doi:10.1029/2001JD001292, 2002.Google Scholar
  137. Mayol-Bracero, O.L., O. Rosario, C.E. Corrigan, R. Morales, I. Torres, and V. Perez, Chemical characterization of submicron organic aerosols in the tropical trade winds of the Caribbean using gas chromatography/mass spectrometry, Atmos. Environ., 35, 1735–1745, 2001.Google Scholar
  138. Fuzzi, S., M.O. Andreae, B.J. Huebert, M. Kulmala, T.C. Bond, M. Boy, S.J. Doherty, A. Guenther, M. Kanakidou, K. Kawamura, V.M. Kerminen, U. Lohmann, L.M. Russell, and U. Pöschl, Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change, Atmos. Chem. Phys., 6, 2017–2038, 2006.Google Scholar
  139. Zender, C.S., H.S. Bian, and D. Newman, Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology, J. Geophys. Res., 108, 4416, doi:10.1029/2002JD002775, 2003.Google Scholar
  140. Brechtel, F.J., and S.M. Kreidenweis, Predicting particle critical supersaturation from hygroscopic growth measurements in the humidified TDMA. Part I: Theory and sensitivity studies, J. Atmos. Sci., 57, 1854–1871, 2000a.Google Scholar
  141. Svenningsson, B., J. Rissler, E. Swietlicki, M.M., M. Bilde, M.C. Facchini, S. Decesari, S. Fuzzi, J. Zhou, J. Monster, and T. Rosenorn, Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance, Atmos. Chem. Phys., 6, 1937–1952, 2006.Google Scholar
  142. Varutbangkul, V., F.J., Brechtel, R., Bahreini, N.L., Ng, M.D., Keywood, J.H., Kroll, R.C., Flagan, J.H., Seinfeld, A., Lee, and A.H., Goldstein, Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds, Atmos. Chem. Phys., 6, 2367–2388, 2006.Google Scholar
  143. Mohler, O., P.R. Field, P. Connolly, S. Benz, H. Saatho, M. Schnaiter, R. Wagner, R. Cotton, M. Kramer, A. Mangold, and A.J. Heymsfield, Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmos. Chem. Phys. Discuss., 6, 1539–1577, 2006.Google Scholar
  144. Krejci, R., J. Ström, M. de Reus, J. Williams, H. Fischer, M.O. Andreae, and H.C. Hansson, Spatial and temporal distribution of atmospheric aerosols in the lowermost troposphere over the Amazonian tropical rainforest, Atmos. Chem. Phys., 5, 1527–1543, 2005.Google Scholar
  145. Andreae, M.O., and A. Gelencsér, Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, 2006.Google Scholar
  146. Le Canut, P., M.O. Andreae, G.W. Harris, F.G. Wienhold, and T. Zenker, Airborne studies of emissions from savanna fires in southern Africa, 1, Aerosol emissions measured with a laser optical particle counter, J. Geophys. Res., 101, 23,615–23,630, 1996.Google Scholar
  147. Ervens, B., G. Feingold, and S.M. Kreidenweis, The influence of water soluble organic carbon on cloud drop number concentration, J. Geophys. Res., 110, D18211, doi:10.1029/2004JD005634, 2005.Google Scholar
  148. Guelle, W., M. Schulz, Y. Balkanski, and F. Dentener, Influence of the source formulation on modeling the atmospheric global distribution of sea salt aerosol, J. Geophys. Res., 106, 27,509–27,524, 2001.Google Scholar
  149. Schmid, O., P. Artaxo, W.P. Arnott, D. Chand, L.V. Gatti, G.P. Frank, A. Hoffer, M. Schnaiter, and M.O. Andreae, Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques, Atmos. Chem. Phys., 6, 3443–3462, 2006.Google Scholar
  150. Quinn, P.K., S.F. Marshall, T.S. Bates, D.S. Covert, and V.N. Kapustin, Comparison of measured and calculated aerosol properties relevant to the direct radiative forcing of tropospheric sulfate aerosol on climate, J. Geophys. Res., 100, 8977–8991, 1995.Google Scholar
  151. Decesari, S., S. Fuzzi, M.C. Facchini, M. Mircea, L. Emblico, F. Cavalli, W. Maenhaut, X. Chi, G. Schkolnik, A. Falkovich, Y. Rudich, M. Claeys, V. Pashynska, G. Vas, I. Kourtchev, R. Vermeylen, A. Hoffer, M.O. Andreae, E. Tagliavini, F. Moretti, and P. Artaxo, Characterization of the organic composition of aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds, Atmos. Chem. Phys., 6, 375–402, 2006.Google Scholar
  152. Molnar, A., E. Meszaros, H.C. Hansson, H. Karlsson, A. Gelencser, G.Y. Kiss, and Z. Krivacsy, The importance of organic and elemental carbon in the fine atmospheric aerosol particles, Atmos. Environ., 33, 2745–2750, 1999.Google Scholar
  153. Levin, Z., and S.A. Yankofsky, Contact versus immersion freezing of freely suspended droplets by bacterial ice nuclei, J. Clim. and Appl. Meteor., 22, 1964–1966, 1983.Google Scholar
  154. Petzold, A., J. Strom, S. Ohlsson, and F.P. Schroder, Elemental composition and morphology of ice-crystal residual particles in cirrus clouds and contrails, Atmos. Res., 49, 21–34, 1998.Google Scholar
  155. Hobbs, P.V., and J.D. Locatelli, Ice nuclei from a natural forest fire, J. Appl. Meteor., 8, 833–834, 1969.Google Scholar
  156. Twomey, S., Davidson, K.A. and Seton, K.J., Results of five years’ observations of cloud nucleus concentration at Roberson, New South Wales’, J. Atmos. Sci., 35, 650–656, 1978Google Scholar
  157. Turpin, B.J., and H.J. Lim, Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass, Aerosol Sci. and Tech., 35, 602–610, 2001.Google Scholar
  158. Zuberi, B., K.S. Johnson, G.K. Aleks, L.T. Molina, and A. Laskin, Hydrophilic properties of aged soot, Geophys. Res. Lett., 32, L01807, doi:10.1029/2004GL021496, 2005.Google Scholar
  159. Andres, R.J., G. Marland, I. Fung, and E. Matthews, A 1°x1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990, Global Biogeochem. Cycles, 10, 419–429, 1996.Google Scholar
  160. Carmichael, G.R., D.G. Streets, G. Calori, M. Amann, M.Z. Jacobson, J. Hansen, and H. Ueda, Changing trends in sulfur emissions in Asia: Implications for acid deposition, air pollution, and climate, Environ. Sci. Technol., 36, 4707–4713, 2002.Google Scholar
  161. Guyon, P., B. Graham, G.C. Roberts, O.L. Mayol-Bracero, W. Maenhaut, P. Artaxo, and M.O. Andreae, In-canopy gradients, composition, sources, and optical properties of aerosol over the Amazon forest, J. Geophys. Res., 108, 4591, doi:10.1029/2003JD003465, 2003b.Google Scholar
  162. Squires, P., and S. Twomey, A comparison of cloud nucleus measurements over central North America and the Caribbean Sea, J. Atmos. Sci., 23, 401–404, 1966.Google Scholar
  163. Diehl, K., C. Quick, S. Matthias-Maser, S.K. Mitra, and R. Jaenicke, The ice nucleating ability of pollen. Part I: Laboratory studies in deposition and condensation freezing modes, Atmos. Res., 58, 75–87, 2001.Google Scholar
  164. Israelevich, P.L., Z. Levin, J.H. Joseph, and E. Ganor, Desert aerosol transport in the Mediterranean region as inferred from the TOMS aerosol index, J. Geophys. Res., 107, 4572, doi:10.1029/2001JD002011, 2002.Google Scholar
  165. Maenhaut, W., J. Cafmeyer, S. Dubtsov, and X.G. Chi, Detailed mass size distributions of elements and species, and aerosol chemical mass closure during fall 1999 at Gent, Belgium, Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions With Materials and Atoms, 189, 238–242, 2002.Google Scholar
  166. Novakov, T., C.E. Corrigan, J.E. Penner, C.C. Chuang, O. Rosario, and O.L.M. Bracero, Organic aerosols in the Caribbean trade winds: A natural source? J. Geophys. Res., 102, 21,307–21,313, 1997.Google Scholar
  167. Krivacsy, Z., A. Hoffer, Z. Sarvari, D. Temesi, U. Baltensperger, S. Nyeki, E. Weingartner, S. Kleefeld, and S.G. Jennings, Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites, Atmos. Environ., 35, 6231–6244, 2001.Google Scholar
  168. Hoppel, W.A., J.E. Dinger, and R.E. Ruskin, Vertical profiles of CCN at various geographical locations, J. Atmos. Sci., 30, 1410–1420, 1973.Google Scholar
  169. Tegen, I., M. Werner, S.P. Harrison, and K.E. Kohfeld, Relative importance of climate and land use in determining present and future global soil dust emission, Geophys. Res. Lett., 31, L05105, doi:10.1029/2003GL019216, 2004.Google Scholar
  170. Levin, Z., E. Ganor, and V. Gladstein, The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean, J. Appl. Meteor., 35, 1511–1523, 1996.Google Scholar
  171. Kreidenweis, S.M., K.Koehler, P.J. DeMott, A.J. Prenni, C. Carrico, and B. Ervens, Water activity and activation diameters from hygroscopicity data. Part I: Theory and application to inorganic salts, Atmos. Chem. Phys., 5, 1357–1370, 2005.Google Scholar
  172. Rissler, J., E. Swietlicki, J. Zhou, G. Roberts, M.O. Andreae, L.V. Gatti, and P. Artaxo, Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition – Comparison of modeled and measured CCN concentrations, Atmos. Chem. Phys., 4, 2119–2143, 2004.Google Scholar
  173. Zender, C.S., R.L. Miller, and I. Tegen, Quantifying mineral dust mass budgets: Terminology, constraints, and current estimates, Eos Trans. AGU, 85, 509–512, 2004.Google Scholar
  174. Heald, C.L., D.J. Jacob, R.J. Park, L.M. Russell, B.J. Huebert, J.H. Seinfeld, H. Liao, and R.J. Weber, A large organic aerosol source in the free troposphere missing from current models, Geophys. Res. Lett., 32, L18809, doi:10.1029/2005GL023831, 2005.Google Scholar
  175. Cachier, H., P. Buat-Ménard, M. Fontugne, and R. Chesselet, Long-range transport of continentally-derived particulate carbon in the marine atmosphere: Evidence from stable carbon isotope studies, Tellus, 35B, 161–177, 1983.Google Scholar
  176. Streets, D.G., K.F. Yarber, J.H. Woo, and G.R. Carmichael, Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions, Global Biogeochem. Cycles, 17, 1099, doi:10.1029/2003GB002040, 2003.Google Scholar
  177. Matthias-Maser, S., and R. Jaenicke, The size distribution of primary biological aerosol particles with radii >0.2 µm in an urban-rural influenced region, Atmos. Res., 39, 279–286, 1995.Google Scholar
  178. Kiss, G., B. Varga, I. Galambos, and I. Ganszky, Characterization of water-soluble organic matter isolated from atmospheric fine aerosol, J. Geophys. Res., 107, 8339, doi:10.1029/2001JD000603, 2002.Google Scholar
  179. Clegg, S.L., P. Brimblecombe, and A.S. Wexler, Thermodynamic model of the system H+-NH4 +-SO4 2--NO3 --H2O at tropospheric temperatures, J. Phys. Chem. A., 102, 2137–2154, 1998.Google Scholar
  180. Jaenicke, R., Tropospheric Aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobbs, pp. 1–27, Academic Press, San Diego, 1993.Google Scholar
  181. Petters, M.D., and S.M. Kreidenweis, A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys. Discuss., 6, 8435–8456, 2006.Google Scholar
  182. Collins, D.R., H.H. Jonsson, J.H. Seinfeld, R.C. Flagan, S. Gasso, D.A. Hegg, P.B. Russell, B. Schmid, J.M. Livingston, E. Ostrom, K.J. Noone, L.M. Russell, and J.P. Putaud, In situ aerosol-size distributions and clear-column radiative closure during ACE-2, Tellus, 52B, 498–525, 2000.Google Scholar
  183. Tegen, I., P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner, Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results, J. Geophys. Res., 102, 23,895–23,915, 1997.Google Scholar
  184. Murphy, D.M., and D.S. Thomson, Chemical composition of single aerosol particles at Idaho Hill: Negative Ion Measurements, J. Geophys. Res., 102, 6341–6352, 1997.Google Scholar
  185. Chan, M.N., and C.K. Chan, Hygroscopic properties of two model humic-like substances and their mixtures with inorganics of atmospheric importance, Environ. Sci. Technol., 37, 5109–5115, 2003.Google Scholar
  186. Andreae, T.W., M.O. Andreae, C. Ichoku, W. Maenhaut, J. Cafmeyer, A. Karnieli, and L. Orlovsky, Light scattering by dust and anthropogenic aerosol at a remote site in the Negev desert, Israel, J. Geophys. Res., 107, 4008, doi:10.1029/2001JD900252, 2002.Google Scholar
  187. Brechtel, F.J., and S.M. Kreidenweis, Predicting particle critical supersaturation from hygroscopic growth measurements in the humidified TDMA. Part II: Laboratory and ambient studies, J. Atmos. Sci., 57, 1872–1887, 2000b.Google Scholar
  188. Turekian, V.C., S.A. Macko, and W.C. Keene, Concentrations, isotopic compositions, and sources of size-resolved, particulate organic carbon and oxalate in near-surface marine air at Bermuda during spring, J. Geophys. Res., 108, 4157, doi:10.1029/2002JD002053, 2003.Google Scholar
  189. Pilinis, C., K.P. Capaldo, A. Nenes, and S.N. Pandis, MADM – A new multicomponent aerosol dynamics model, Aerosol Sci. and Tech., 32, 482–502, 2000.Google Scholar
  190. Junge, C.E., Die Rolle der Aerosole und der gasförmigen Beimengungen der Luft im Spurenstoffhaushalt der Troposphäre, Tellus, 5, 1–26, 1953.Google Scholar
  191. Streets, D.G., T.C. Bond, T. Lee, and C. Jang, On the future of carbonaceous aerosol emissions, J. Geophys. Res., 109, D24212, doi:10.1029/2004JD004902, 2004.Google Scholar
  192. Sinha, P., P.V. Hobbs, R.J. Yokelson, D.R. Blake, S. Gao, and T.W. Kirchstetter, Distributions of trace gases and aerosols during the dry biomass burning season in southern Africa, J. Geophys. Res., 108, 4536, doi:10.1029/2003JD003691, 2003.Google Scholar
  193. Rudich, Y., O. Khersonsky, and D. Rosenfeld, Treating clouds with a grain of salt, Geophys. Res. Lett., 29, 2060, doi:10.1029/2002GL016055, 2002.Google Scholar
  194. Van Dingenen, R., F. Raes, J.P. Putaud, U. Baltensperger, A. Charron, M.C. Facchini, S. Decesari, S. Fuzzi, R. Gehrig, H.G. Hansson, R.M. Harrisonc, C.H. Uglin, A.M. Jones, P. Laj, G. Lorbeer, W. Maenhaut, F. Palmgren, X. Querol, S. Rodriguez, J. Schneider, H. ten Brink, P. Tunved, K. Torseth, B. Wehner, E. Weingartner, A. Wiedensohler, and P. Wahlin, A European aerosol phenomenology-1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38, 2561–2577, 2004.Google Scholar
  195. Bates, T.S., P.K. Quinn, D.S. Covert, D.J. Coffman, J.E. Johnson, and A. Wiedensohler, Aerosol physical properties and processes in the lower marine boundary layer: A comparison of shipboard sub-micron data from ACE-1 and ACE-2, Tellus, 52B, 258–272, 2000.Google Scholar
  196. Hallett, J., J.G. Hudson, and C.F. Rogers, Characterization of combustion aerosols for haze and cloud formation, Aerosol Sci. Tech., 10, 70–83, 1989.Google Scholar
  197. Andreae, M.O., W. Elbert, Y. Cai, T.W. Andreae, and J. Gras, Non-seasalt sulfate, methanesulfonate, and nitrate aerosol concentrations and size distributions at Cape Grim, Tasmania, J. Geophys. Res., 104, 21,695–21,706, 1999.Google Scholar
  198. Wexler, A.S., and J.H. Seinfeld, Second-generation inorganic aerosol model, Atmos. Environ., 25A, 2731–2748, 1991.Google Scholar
  199. Gard, E.E., M.J. Kleeman, D.S. Gross, L.S. Hughes, J.O. Allen, B.D. Morrical, D.P. Fergenson, T. Dienes, M.E. Galli, R.J. Johnson, G.R. Cass, and K.A. Prather, Direct observation of heterogeneous chemistry in the atmosphere, Science, 279, 1184–1187, 1998.Google Scholar
  200. Raymond, T.M., and S.N. Pandis, Cloud activation of single-component organic aerosol particles, J. Geophys. Res., 107, 4787, doi:10.1029/2002JD002159, 2002.Google Scholar
  201. Wolf, M.E., and G.M. Hidy, Aerosols and climate: Anthropogenic emissions and trends for 50 years, J. Geophys. Res., 102, 11,113–11,121, 1997.Google Scholar
  202. Hughes, L.S., J.O. Allen, M.J. Kleeman, R.J. Johnson, G.R. Cass, D.S. Gross, E.E. Gard, M.E. Galli, B.D. Morrical, D.P. Fergenson, T. Dienes, C.A. Noble, P.J. Silva, and K.A. Prather, Size and composition distribution of atmospheric particles in southern California, Environ. Sci. Technol., 33, 3506–3515, 1999.Google Scholar
  203. Whitby, K.T., W.E. Clark, V.A. Marple, G.M. Sverdrup, G.J. Sem, K. Willeke, B.Y.H. Liu, and D.Y.H. Pui, Characterization of California aerosols. 1: Size distributions of freeway aerosol, Atmos. Environ., 9, 463–482, 1975.Google Scholar
  204. Moore, K.G., A.D. Clarke, V.N. Kapustin, and S.G. Howell, Long-range transport of continental plumes over the Pacific Basin: Aerosol physiochemistry and optical properties during PEM-Tropics A and B, J. Geophys. Res., 108, 8236, doi:10.1029/2001JD001451, 2003.Google Scholar
  205. Mayol-Bracero, O.L., R. Gabriel, M.O. Andreae, T.W. Kirchstetter, T. Novakov, J. Ogren, P. Sheridan, and D.G. Streets, Carbonaceous aerosols over the Indian Ocean during the Indian Ocean Experiment (INDOEX): Chemical characterization, optical properties and probable sources, J. Geophys. Res., 107, 8030, doi:10.1029/2000JD000039, 2002a.Google Scholar
  206. Bond, T.C., D.G. Streets, K.F. Yarber, S.M. Nelson, J.H. Woo, and Z. Klimont, A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res., 109, D14203, doi:10.1029/2003JD003697, 2004.Google Scholar
  207. Artaxo, P., J.V. Martins, M.A. Yamasoe, A.S. Procópio, T.M. Pauliquevis, M.O. Andreae, P. Guyon, L.V. Gatti, and A.M.C. Leal, Physical and chemical properties of aerosols in the wet and dry season in Rondonia, Amazonia, J. Geophys. Res., 107, 8081, doi:10.1029/2001JD000666, 2002.Google Scholar
  208. Mircea, M., M.C.Facchini, S. Decesari, F. Cavalli, L. Emblico, S. Fuzzi, A. Vestin, J. Rissler, E. Swietlicki, G. Frank, M.O. Andreae, W. Maenhaut, Y. Rudich, and P. Artaxo, Importance of the organic aerosol fraction for modeling aerosol hygroscopic growth and activation: A case study in the Amazon Basin, Atmos. Chem. Phys., 5, 3111–3126, 2005.Google Scholar
  209. Lihavainen, H., V.M. Kerminen, M. Komppula, J. Hatakka, V. Aaltonen, M. Kulmala, and Y. Viisanen, Production of “potential” cloud condensation nuclei associated with atmospheric new-particle formation in northern Finland, J. Geophys. Res., 108, 4782, doi:10.1029/2003JD003887, 2003.Google Scholar
  210. Raymond, T.M., and S.N. Pandis, Formation of cloud droplets by multicomponent organic particles, J. Geophys. Res., 108, 4469, doi:10.1029/2003JD003503, 2003.Google Scholar
  211. Gong, S.L., L.A. Barrie, and M. Lazare, Canadian Aerosol Module (CAM): A size-segregated simulation of atmospheric aerosol processes for climate and air quality models. 2. Global sea-salt aerosol and its budgets, J. Geophys. Res., 107, 4779, doi:10.1029/2001JD002004, 2002.Google Scholar
  212. Artaxo, P., F. Gerab, M.A. Yamasoe, and J.V. Martins, Fine mode aerosol composition at three long-term atmospheric monitoring sites in the Amazon Basin, J. Geophys. Res., 99, 22,857–22,868, 1994.Google Scholar
  213. Kreidenweis, S.M., L.M. McInnes, and F.J. Brechtel, Observations of aerosol volatility and elemental composition at Macquarie Island during the First Aerosol Characterization Experiment (ACE 1), J. Geophys. Res., 103, 16,511–16,524, 1998.Google Scholar
  214. Rogers, C.F., J.G. Hudson, B. Zielinska, R.L. Tanner, J. Hallett, and J.G. Watson, Cloud condensation nuclei from biomass burning, in Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, edited by J.S. Levine, pp. 431–438, MIT Press, Cambridge, MA, 1991.Google Scholar
  215. Facchini, M.C., M. Mircea, S. Fuzzi, and R.J. Charlson, Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nature, 401, 257–259, 1999.Google Scholar
  216. Gao, S., D.A. Hegg, P.V. Hobbs, T.W. Kirchstetter, B.I. Magi, and M. Sadilek, Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution, J. Geophys. Res., 108, 8491, doi:10.1029/2002/JD002324, 2003.Google Scholar
  217. VanReken, T.M., T.A. Rissman, G.C. Roberts, V. Varutbangkul, H.H. Jonsson, R.C. Flagan, and J.H. Seinfeld, Toward Aerosol/Cloud Condensation Nuclei (CCN) closure during CRYSTAL-FACE, J. Geophys. Res., 108, 4633, doi:10.1029/2003JD003582, 2003.Google Scholar
  218. Bilde, M., and B. Svenningsson, CCN activation of slightly soluble organics: The importance of small amounts of inorganic salt and particle phase, Tellus, 56B, 128–134, 2004.Google Scholar
  219. Crutzen, P.J., and M.O. Andreae, Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles, Science, 250, 1669–1678, 1990.Google Scholar
  220. Kim, Y.J., J.F. Boatman, R.L. Gunter, D.L. Wellman, and S.W. Wilkison, Vertical distribution of atmospheric aerosol size distribution over South-Central New Mexico, Atmos. Environ., 27A, 1351–1362, 1993a.Google Scholar
  221. Murphy, D.M., J.R. Anderson, P.K. Quinn, L.M. McInnes, F.J. Brechtel, S.M. Kreidenweis, A.M. Middlebrook, M. Posfai, D.S. Thomson, and P.R. Buseck, Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer, Nature, 392, 62–65, 1998a.Google Scholar
  222. Kerminen, V.M., Relative roles of secondary sulfate and organics in atmospheric cloud condensation nuclei production, J. Geophys. Res., 106, 17,321–17,333, 2001.Google Scholar
  223. Fuzzi, S., S. Decesari, M.C. Facchini, F. Cavalli, L. Emblico, M. Mircea, M.O. Andreae, I. Trebs, A. Hoffer, P. Guyon, P. Artaxo, L.V. Rizzo, L.L. Lara, T. Pauliquevis, W. Maenhaut, N. Raes, X. Chi, O.L. Mayol-Bracero, L.L. Soto-García, M. Claeys, I. Kourtchev, J. Rissler, E. Swietlicki, E. Tagliavini, G. Schkolnik, A.H. Falkovich, Y. Rudich, G. Fisch, and L.V. Gatti. Overview of the inorganic and organic composition of size-segregated aerosol in Rondônia, Brazil, from the biomass burning period to the onset of the wet season, J. Geophy. Res., 112, D01201, doi:10.1029/2005JD006741, 2007.Google Scholar
  224. Eleftheriadis, K., and I. Colbeck, Coarse atmospheric aerosol: Size distributions of trace elements, Atmos. Environ., 35, 5321–5330, 2001.Google Scholar
  225. Mahowald, N.M., C.S. Zender, C. Luo, D. Savoie, O. Torres, and J. del Corral, Understanding the 30-year Barbados desert dust record, J. Geophys. Res., 107, 4561, doi:10.1029/2002JD002097, 2002.Google Scholar
  226. Tang, I.N., Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance, J. Geophys. Res., 102, 1883–1893, 1997.Google Scholar
  227. Endresen, O., J. Bakke, E. Sorgard, T.F. Berglen, and P. Holmvang, Improved modelling of ship SO2 emissions – A fuel-based approach, Atmos. Environ., 39, 3621–3628, 2005.Google Scholar
  228. Molina, M.J., A.V. Ivanov, S. Trakhtenberg, and L.T. Molina, Atmospheric evolution of organic aerosol, Geophys. Res. Lett., 31, L22104, doi:10.1029/2004GL020910, 2004.Google Scholar
  229. Guazzotti, S.A., K.R. Coffee, and K.A. Prather, Continuous measurements of size-resolved particle chemistry during INDOEX-Intensive Field Phase 99, J. Geophys. Res., 106, 28,607–28,627, 2001.Google Scholar
  230. Andreae, M.O., D. Rosenfeld, P. Artaxo, A.A. Costa, G.P. Frank, K.M. Longo, and M.A.F. Silva-Dias, Smoking rain clouds over the Amazon, Science, 303, 1337–1342, 2004.Google Scholar
  231. Cruz, C.N., and S.N. Pandis, The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol, J. Geophys. Res., 103, 13,111–13,123, 1998.Google Scholar
  232. Reid, J.S., and P.V. Hobbs, Physical and optical properties of young smoke from individual biomass fires in Brazil, J. Geophys. Res., 103, 32,013–32,030, 1998.Google Scholar
  233. Cruz, C.N., and S.N. Pandis, A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei, Atmos. Environ., 31, 2205–2214, 1997.Google Scholar
  234. Abbatt, J.P.D., K. Broekhuizen, and P.P. Kumal, Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles, Atmos. Environ., 39, 4767–4778, 2005.Google Scholar
  235. McInnes, L., D. Covert, and B. Baker, The number of sea-salt, sulfate, and carbonaceous particles in the marine atmosphere: EM measurements consistent with the ambient size distribution, Tellus, 49B, 300–313, 1997.Google Scholar
  236. Liousse, C., M.O. Andreae, P. Artaxo, P. Barbosa, H. Cachier, J.M. Grégoire, P. Hobbs, D. Lavoué, F. Mouillot, J. Penner, M. Scholes, and M.G. Schultz, Deriving global quantitative estimates for spatial and temporal distributions of biomass burning emissions, in Emissions of Atmospheric Trace Compounds, edited by C. Granier, P. Artaxo, and C.E. Reeves, pp. 71–113, Kluwer, Dordrecht, 2004.Google Scholar
  237. Textor, C., H.F. Graf, C. Timmreck, and A. Robock, Emissions from volcanoes, in Emissions of Atmospheric Trace Compounds, edited by C. Granier, P. Artaxo, and C.E. Reeves, Kluwer, Dordrecht, 2004.Google Scholar
  238. Reddy, M.S., and C. Venkataraman, Inventory of aerosol and sulphur dioxide emissions from India. Part II – Biomass combustion, Atmos. Environ., 36, 699–712, 2002.Google Scholar
  239. Claeys, M., W. Wang, A.C. Ion, I. Kourtchev, A. Gelencser, and W. Maenhaut, Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide, Atmos. Environ., 38, 4093–4098, 2004.Google Scholar
  240. Graf, H.F., J. Feichter, and B. Langmann, Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution, J. Geophys. Res., 102, 10,727–10,738, 1997.Google Scholar
  241. Putaud, J.P., F. Raes, R. Van Dingenen, E. Brüggemann, M.C. Facchini, S. Decesari, S. Fuzzi, R. Gehrig, C. Hüglin, P. Laj, G. Lorbeer, W.Maenhaut, N. Mihalopoulos, K. Müller, X. Querol, S. Rodriguez, J. Schneider, G. Spindler, H. ten Brink, K. Tørseth and A. Wiedensohler, European aerosol phenomenology. 2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38, 2579–2595, 2004.Google Scholar
  242. Graham, B., P. Guyon, W. Maenhaut, P.E. Taylor, M. Ebert, S. Matthias-Maser, O. Mayol-Bracero, R.H.M. Godoi, P. Artaxo, F. Meixner, M.A.L. Moura, C.H.E.D. Rocha, R. van Grieken, M.M. Glovsky, R.C. Flagan, and M.O. Andreae, Composition and diurnal variability of the natural Amazonian aerosol, J. Geophys. Res., 108, 4765, doi:10.1029/2003JD004049, 2003a.Google Scholar
  243. Metzger, S., F. Dentener, M. Krol, A. Jeuken, and J. Lelieveld, Gas/aerosol partitioning. 2. Global modeling results, J. Geophys. Res., 107, 4313, doi:10.1029/2001JD001103, 2002a.Google Scholar
  244. Dentener, F.J., S. Kinne, T. Bond, O. Boucher, J. Cofala, S. Generoso, P. Ginoux, S. Gong, J.J. Hoelzemann, A. Ito, L. Marelli, J.E. Penner, J.P. Putaud, C. Textor, M.Schulz, G.R. van der Werf, and J. Wilson, Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data sets for AeroCom, Atmos. Chem. Phys., 6, 4321–4344, 2006.Google Scholar
  245. Mochida, M., Y. Kitamori, K. Kawamura, Y. Nojiri, and K. Suzuki, Fatty acids in the marine atmosphere: Factors governing their concentrations and evaluation of organic films on sea-salt particles, J. Geophys. Res., 107, 4325, doi:10.1029/2001JD001278, 2002.Google Scholar
  246. Sicre, M.A., J.C. Marty, and A. Saliot, N-alkanes, fatty-acid esters, and fatty-acid salts in size fractionated aerosols collected over the Mediterranean Sea, J. Geophys. Res., 95, 3649–3657, 1990.Google Scholar
  247. Leaitch, W.R., and G.A. Isaac, Tropospheric aerosol size distributions from 1982 to 1988 over eastern north-america, Atmos. Environ. Part a-General Topics, 25, 601–619, 1991.Google Scholar
  248. Rissler, J., A. Vestin, E. Swietlicki, G. Fisch, J. Zhou, P. Artaxo, and M.O. Andreae, Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia, Atmos. Chem. Phys., 6, 471–491, 2006.Google Scholar
  249. Gao, S., D.A. Hegg, G. Frick, P.F. Caffrey, L. Pasternack, C. Cantrell, W. Sullivan, J. Ambrusko, T. Albrechcinski, and T.W. Kirchstetter, Experimental and modeling studies of secondary organic aerosol formation and some applications to the marine boundary layer: J. Geophys. Res., 106, 27,619–27,634, 2001.Google Scholar
  250. Kim, Y.P., J.H. Seinfeld, and P. Saxena, Atmospheric gas-aerosol equilibrium. 1. Thermodynamic model, Aerosol Sci. Tech., 19, 157–181, 1993b.Google Scholar
  251. Kumai, M., Identification of nuclei and concentrations of chemical species in snow crystals sampled at South Pole, J. Atmos. Sci., 33, 833–841, 1976.Google Scholar
  252. Rivera-Carpio, C.A., C.E. Corrigan, T. Novakov, J.E. Penner, C.F. Rogers, and J.C. Chow, Derivation of contributions of sulfate and carbonaceous aerosols to cloud condensation nuclei from mass size distributions, J. Geophys. Res., 101, 19,483–19,493, 1996.Google Scholar
  253. Bates, T.S., P.K. Quinn, D.J. Coffman, J.E. Johnson, T.L. Miller, D.S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, and C. Neusuess, Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols 99: An overview, J. Geophys. Res., 106, 20,767–20,782, 2001.Google Scholar
  254. Laaksonen, A., P.Korhonen, M. Kulmala, and R.J. Charlson, Modification of the Köhler equation to include soluble trace gases and slightly soluble substances, J. Atmos. Sci., 55, 853–862, 1998.Google Scholar
  255. Matthias-Maser, S., V. Obolkin, T. Khodzer, and R. Jaenicke, Seasonal variation of primary biological aerosol particles in the remote continental region of Lake Baikal/Siberia, Atmos. Environ., 34, 3805–3811, 2000.Google Scholar
  256. Shantz, N.C., W.R. Leaitch, and P.F. Caffrey, Effect of organics of low solubility on the growth rate of cloud droplets, J. Geophys. Res., 108, 4168, doi:10.1029/2002JD002540, 2003.Google Scholar
  257. Mayol-Bracero, O.L., P. Guyon, B. Graham, G. Roberts, M.O. Andreae, S. Decesari, M. . Facchini, S. Fuzzi, and P. Artaxo, Water-soluble organic compounds in biomass burning aerosols over Amazonia: 2. Apportionment of the chemical composition and importance of the polyacidic fraction, J. Geophys. Res., 107, 8091, doi:10.1029/2001JD000522, 2002b.Google Scholar
  258. Zappoli, S., A. Andracchio, S. Fuzzi, M.C. Facchini, A. Gelencser, G. Kiss, Z. Krivacsy, A. Molnar, E. Meszaros, H.C. Hansson, K. Rosman, and Y. Zebühr, Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility, Atmos. Environ., 33, 2733–2743, 1999.Google Scholar
  259. Quinn, P.K., D.J. Coffman, V.N. Kapustin, T.S. Bates, and D.S. Covert, Aerosol optical properties in the marine boundary layer during the First Aerosol Characterization Experiment (ACE 1) and the underlying chemical and physical aerosol properties, J. Geophys. Res., 103, 16,547–16,563, 1998.Google Scholar
  260. Kirchstetter, T.W., T.Novakov, and P.V. Hobbs, Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon, J. Geophys. Res., 109, D21208, doi:10.1029/2004JD0004999, 2004.Google Scholar
  261. Hoppel, W.A., J.W. Fitzgerald, G. Frick, P. Caffrey, L. Pasternack, D. Hegg, S. Gao, R. Leaitch, N. Shantz, C. Cantrell, T. Albrechcinski, I. Ambrusko, and W. Sullivan, Particle formation and growth from ozonolysis of alpha-pinene, J. Geophys. Res., 106, 27,603–27,618, 2001.Google Scholar
  262. Jimenez, J.L., J.T. Jayne, Q. Shi, C.E. Kolb, D.R. Worsnop, I. Yourshaw, J.H. Seinfeld, R.C. Flagan, X.F. Zhang, K.A. Smith, J.W. Morris, and P. Davidovits, Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer, J. Geophys. Res., 108, 8424, doi:10.1029/2001JD000660, 2003.Google Scholar
  263. Petzold, A., M. Fiebig, H. Flentje, A. Keil, U. Leiterer, F. Schroder, A. Stifter, M. Wendisch, and P. Wendling, Vertical variability of aerosol properties observed at a continental site during the Lindenberg Aerosol Characterization Experiment (LACE 98), J. Geophys. Res., 107, 8128, doi:10.1029/2001JD001043, 2002.Google Scholar
  264. Prenni, A.J., P.J. DeMott, and S.M. Kreidenweis, Water uptake of internally mixed particles containing ammonium sulfate and dicarboxylic acids, Atmos. Environ., 37, 4243–4251, 2003.Google Scholar
  265. Trochkine, D., Y. Iwasaka, A. Matsuki, M. Yamada, Y.S. Kim, T. Nagatani, D. Zhang, G.Y. Shi, and Z. Shen, Mineral aerosol particles collected in Dunhuang, China, and their comparison with chemically modified particles collected over Japan, J. Geophys. Res., 108, 8642, doi:10.1029/2002JD003268, 2003.Google Scholar
  266. Bates, T.S., B.J. Huebert, J.L. Gras, F.B. Griffiths, and P.A. Durkee, The International Global Atmospheric Chemistry (IGAC) Project's First Aerosol Characterization Experiment (ACE-1) – Overview, J. Geophys. Res., 103, 16,279–16,318, 1998.Google Scholar
  267. Karcher, B., T. Peter, U.M. Biermann, and U. Schumann, The initial composition of jet condensation trails, J. Atmos. Sci., 53, 3066–3083, 1996.Google Scholar
  268. Talbot, R.W., M.O. Andreae, T.W. Andreae, and R.C. Harriss, Regional aerosol chemistry of the Amazon Basin during the dry season, J. Geophys. Res., 93, 1499–1508, 1988.Google Scholar
  269. Heintzenberg, J., and D.C. Covert, Size distribution and chemical composition of marine aerosols: A compilation and review, Tellus, 52B, 1104–1122, 2000.Google Scholar
  270. Mazurek, M., M.C. Masonjones, H.D. Masonjones, L.G. Salmon, G.R. Cass, K.A. Hallock, and M. Leach, Visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park: Properties observed by high resolution gas chromatography, J. Geophys. Res., 102, 3779–3793, 1997.Google Scholar
  271. Adams, P.J., J.H. Seinfeld, D. Koch, L. Mickley, and D. Jacob, General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system, J. Geophys. Res., 106, 1097–1111, 2001.Google Scholar
  272. McFiggans, G., P. Artaxo, U. Baltensperger, H. Coe, M.C. Facchini, G. Feingold, S. Fuzzi, M. Gysel, A. Laaksonen, U. Lohmann, T.F. Mentel, D.M. Murphy, C.D. O'Dowd, J.R. Snider, E. Weingartner, The effect of physical and chemical aerosol properties on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649, 2006.Google Scholar
  273. Choi, M.Y., and C.K. Chan, Continuous measurements of the water activities of aqueous droplets of water-soluble organic compounds, J. Phys. Chem. A., 106, 4566–4572, 2002.Google Scholar
  274. Warner, J., and S. Twomey, The production of cloud nuclei by cane fires and the effect on cloud droplet concentration, J. Atmos. Sci., 24, 704–706, 1967.Google Scholar
  275. Andreae, M.O., R. Talbot, H. Berresheim, and K.M. Beecher, Precipitation chemistry of Central Amazonia, J. Geophy. Res., 95, 16,987–16,999, 1990.Google Scholar
  276. Junker, C., and C. Liousse, A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997, Atmos. Chem. Phys. Discuss., 4, 4897–4927, 2006.Google Scholar
  277. Putaud, J.P., R. van Dingenen, M. Mangoni, A. Virkkula, F. Raes, H. Maring, J.M. Prospero, E. Swietlicki, O.H. Berg, H. Hillamo, and T. Mäkelä, Chemical mass closure and origin assessment of the submicron aerosol in the marine boundary layer and the free troposphere at Tenerife during ACE-2, Tellus, 52B, 141–168, 2000.Google Scholar
  278. Zhou, J.C., E. Swietlicki, O.H. Berg, P.P. Aalto, K. Hameri, E.D. Nilsson, and C. Leck, Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer, J. Geophys. Res., 106, 32,111–32,123, 2001.Google Scholar
  279. Hori, M., S. Ohta, N. Murao, and S. Yamagata, Activation capability of water soluble organic substances as CCN, J. Aerosol Sci., 34, 419–448, 2003.Google Scholar
  280. Russell, L.M., Aerosol organic-mass-to-organic-carbon ratio measurements, Environ. Sci. Technol., 37, 2982–2987, 2003.Google Scholar
  281. Clarke, A.D., V. Kapustin, S. Howell, K. Moore, B. Lienert, S. Masonis, T. Anderson, and D. Covert, Sea-salt size distributions from breaking waves: Implications for marine aerosol production and optical extinction measurements during SEAS, J. Atmos. Ocean. Technol., 20, 1362–1374, 2003.Google Scholar
  282. Generoso, S., F.M. Breon, Y. Balkanski, O. Boucher, and M. Schulz, Improving the seasonal cycle and interannual variations of biomass burning aerosol sources, Atmos. Chem. Phys., 3, 1211–1222, 2003.Google Scholar
  283. Kanakidou, M., J.H. Seinfeld, S.N. Pandis, I. Barnes, F.J. Dentener, M.C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C.J. Nielsen, E. Swietlicki, J.P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G.K. Moortgat, R. Winterhalter, C.E.L. Myhre, K. Tsigaridis, E. Vignati, E.G. Stephanou, and J. Wilson, Organic aerosol and global climate modelling: A review, Atmos. Chem. Phys., 5, 1053–1123, 2005.Google Scholar
  284. Peng, C., M.N. Chan, and C.K. Chan, The hygroscopic properties of dicarboxylic and multifunctional acids: Measurements and UNIFAC predictions, Environ. Sci. Tech., 35, 4495–4501, 2001a.Google Scholar
  285. Stier, P., J. Feichter, S. Kloster, E. Vignati, and J. Wilson, Emission-induced nonlinearities in the global aerosol system: Results from the ECHAM5-HAM aerosol-climate model, J. Clim., 19, 3845–3862, 2006.Google Scholar
  286. Hao, W.M., and M.H. Liu, Spatial and temporal distribution of tropical biomass burning, Global Biogeochem. Cycles, 8, 495–503, 1994.Google Scholar
  287. Hudson, J.G. and S.S. Yum, Cloud condensation nuclei spectral and polluted and clean clouds over the Indian Ocean, J. Geophys. Res., 107, 8022, doi:10.1029/2001JD000829, 2002.Google Scholar
  288. Marcolli, C., B.P. Luo, and T. Peter, Mixing of the organic aerosol fractions: Liquids as the thermodynamically stable phases, J. Phys. Chem. A., 108, 2216–2224, 2004.Google Scholar
  289. Lavoué, D., C. Liousse, H. Cachier, B.J. Stocks, and J.G. Goldammer, Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes, J. Geophys. Res., 105, 26,871–26,890, 2000.Google Scholar
  290. Nenes, A., S.N. Pandis, and C. Pilinis, ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols, Aquat. Geochem., 4, 123–152, 1998.Google Scholar
  291. Barger, W.R., and W.D. Garrett, Surface-active organic material in air over Mediterranean and over eastern Equatorial Pacific, J. Geophys. Res., 81, 3151–3157, 1976.Google Scholar
  292. Gagosian, R.B., O.C. Zafiriou, E.T. Peltzer, and J.B. Alford, Lipids in aerosols from the tropical North Pacific – Temporal variability, J. Geophys. Res. -Oceans and Atmospheres., 87, 1133–1144, 1982.Google Scholar
  293. Formenti, P., W. Elbert, W. Maenhaut, J. Haywood, and M.O. Andreae, Chemical composition of mineral dust during the Saharan Dust Experiment (SHADE) airborne campaign in the Cape Verde region, September 2000, J. Geophys. Res., 108, 8576, doi:10.1029/2002JD002408, 2003.Google Scholar
  294. Schulz, M., G. de Leeuw, and Y. Balkanski, Sea-salt aerosol source functions and emissions, in Emissions of Atmospheric Trace Compounds, edited by C. Granier, P. Artaxo, and C.E. Reeves, pp. 333–359, Kluwer, Dordrecht, 2004.Google Scholar
  295. Kerminen, V.M., A. Virkkula, R. Hillamo, A.S. Wexler, and M. Kulmala, Secondary organics and atmospheric cloud condensation nuclei production, J. Geophys. Res., 105, 9255–9264, 2000.Google Scholar
  296. Dusek, U., D.S. Covert, A. Wiedensohler, C. Neususs, D. Weise, and W. Cantrell, Cloud condensation nuclei spectra derived from size distributions and hygroscopic properties of the aerosol in coastal south-west Portugal during ACE-2, Tellus B., 55, 35–53, 2003.Google Scholar
  297. Kanakidou, M., K. Tsigaridis, F.J. Dentener, and P.J. Crutzen, Human-activity-enhanced formation of organic aerosols by biogenic hydrocarbon oxidation, J. Geophys. Res., 105, 9243–9254, 2000.Google Scholar
  298. Corrigan, C.E., and T. Novakov, Cloud condensation nucleus activity of organic compounds: A laboratory study, Atmos. Environ., 33, 2661–2668, 1999.Google Scholar
  299. Prenni, A.J., P.J. DeMott, S.M. Kreidenweis, D.E. Sherman, L.M. Russell, and Y. Ming, The effects of low molecular weight dicarboxylic acids on cloud formation, J. Phys. Chem. A., 105, 11,240–11,248, 2001.Google Scholar
  300. Kalberer, M., D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A.S.H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, and U. Baltensperger, Identification of polymers as major components of atmospheric organic aerosols, Science, 303, 1659–1662, 2004.Google Scholar
  301. Weber, R.J., P.H. McMurry, L. Mauldin, D.J. Tanner, F.L. Eisele, F.J. Brechtel, S.M. Kreidenweis, G.L. Kok, R.D. Schillawski, and D. Baumgardner, A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1, J. Geophys. Res., 103, 16,385–16,396, 1998.Google Scholar
  302. Cooke, W.F., C. Liousse, H. Cachier, and J. Feichter, Construction of a 1°x1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM-4 model, J. Geophys. Res., 104, 22,137–22,162, 1999.Google Scholar
  303. Delene, D.J., and T. Deshler, Vertical profiles of cloud condensation nuclei above Wyoming, J. Geophys. Res., 106, 12,579–12,588, 2001.Google Scholar
  304. Talbot, R.W., M.O. Andreae, H. Berresheim, P. Artaxo, M. Garstang, R.C. Harriss, K.M. Beecher, and S.M. Li, Aerosol chemistry during the wet season in Central Amazonia: The influence of long-range transport, J. Geophys. Res., 95, 16,955–16,969, 1990.Google Scholar
  305. Streets, D.G., N.Y. Tsai, H. Akimoto, and K. Oka, Sulfur dioxide emissions in Asia in the period 1985–1997, Atmos. Environ., 34, 4413–4424, 2000.Google Scholar
  306. Posfai, M., J. Li, J.R. Anderson, and P.R. Buseck, Aerosol bacteria over the Southern Ocean during ACE-1, Atmos. Res., 66, 231–240, 2003.Google Scholar
  307. Smith, S.J., H. Pitcher, and T.M.L. Wigley, Global and regional anthropogenic sulfur dioxide emissions, Global Planet. Change, 29, 99–119, 2001.Google Scholar
  308. Fitzgerald, J.W., Effect of aerosol composition on cloud droplet size distribution: A numerical study, J. Atmos. Sci., 31, 1358–1367, 1974.Google Scholar
  309. Massie, S.T., O. Torres, and S.J. Smith, Total Ozone Mapping Spectrometer (TOMS) observations of increases in Asian aerosol in winter from 1979 to 2000, J. Geophys. Res., 109, D18211, doi:10.1029/2004JD004620, 2004.Google Scholar
  310. Derwent, R.G., M.E. Jenkin, C.E. Johnson, and D.S. Stevenson, The global distribution of secondary particulate matter in a 3-D Lagrangian chemistry transport model, J. Atmos. Chem., 44, 57–95, 2003.Google Scholar
  311. Riemer, N., H. Vogel, and B. Vogel, Soot aging time scales in polluted regions during day and night, Atmos. Chem. Phys., 4, 1885–1893, 2004.Google Scholar
  312. Charlson, R.J., J.H. Seinfeld, A. Nenes, M. Kulmala, A. Laaksonen, and M.C. Facchini, Reshaping the theory of cloud formation, Science, 292, 2025–2026, 2001.Google Scholar
  313. Komppula, M., H. Lihavainen, V.M. Kerminen, M. Kulmala, and Y. Viisanen, Measurements of cloud droplet activation of aerosol particles at a clean subarctic background site, J. Geophys. Res., 110, D06204, doi:10.1029/2004JD005200, 2005.Google Scholar
  314. Medina, J., and A. Nenes, Effects of film-forming compounds on the growth of giant cloud condensation nuclei: Implications for cloud microphysics and the aerosol indirect effect, J. Geophys. Res., 109, D20207, doi:10.1029/2004JD004666, 2004.Google Scholar
  315. Griffin, R.J., D.R. Cocker, III, J.H. Seinfeld, and D. Dabdub, Estimate of global atmospheric organic aerosols from oxidation of biogenic hydrocarbons, Geophys. Res. Lett., 26, 2721–2724, 1999.Google Scholar
  316. Zhang, Y.H., X.L. Zhu, S. Slanina, M. Shao, L.M. Zeng, M. Hu, M. Bergin, and L. Salmon, Aerosol pollution in some Chinese cities (IUPAC Technical Report), Pure and Applied Chemistry, 76, 1227–1239, 2004b.Google Scholar
  317. Mårtensson, E.M., E.D. Nilsson, G. de Leeuw, L.H. Cohen, and H.C. Hansson, Laboratory simulations and parameterization of the primary marine aerosol production, J. Geophys. Res., 108, 4297, doi:10.1029/2002JD002263, 2003.Google Scholar
  318. Roelofs, G.J., P. Kasibhatla, L. Barrie, D. Bergmann, C. Bridgeman, M. Chin, J. Christensen, R. Easter, J. Feichter, A. Jeuken, E. Kjellstrom, D. Koch, C. Land, U. Lohmann, and P. Rasch, Analysis of regional budgets of sulfur species modeled for the COSAM exercise, Tellus, 53B, 673–694, 2001.Google Scholar
  319. Simoneit, B.R.T., J.N. Cardoso, and N. Robinson, An assessment of the origin and composition of higher molecular weight organic matter in aerosols over Amazonia, Chemosphere, 21, 1285–1301, 1990.Google Scholar
  320. Hudson, J.G., J. Hallett, and C.F. Rogers, Field and laboratory measurements of cloud-forming properties of combustion aerosols, J. Geophys. Res., 96, 10,847–10,859, 1991.Google Scholar
  321. Arimoto, R., B.J. Ray, N.F. Lewis, U. Tomza, and R.A. Duce, Mass-particle size distributions of atmospheric dust and the dry deposition of dust to the remote ocean, J. Geophys. Res., 102, 15,867–15,874, 1997.Google Scholar
  322. Graham, B., O.L. Mayol-Bracero, P. Guyon, G.C. Roberts, S. Decesari, M.C. Facchini, P. Artaxo, W. Maenhaut, P. Köll, and M.O. Andreae, Water-soluble organic compounds in biomass burning aerosols over Amazonia: 1. Characterization by NMR and GC-MS, J. Geophys. Res., 107, 8047, doi:10.1029/2001JD000336, 2002.Google Scholar
  323. Artaxo, P., H. Storms, F. Bruynseels, R.V. Grieken, and W. Maenhaut, Composition and sources of aerosols from the Amazon basin, J. Geophys. Res., 93, 1605–1615, 1988.Google Scholar
  324. Sassen, K., Dusty ice clouds over Alaska, Nature, 434, 456, 2005.Google Scholar
  325. Barrie, L.A., Y.Yi, W.R. Leattch, U. Lohmann, P. Kasibhatla, G.J. Roelofs, J. Wilson, F. McGovern, C. Benkovitz, M.A. Mélières, K. Law, J. Prospero, M. Kritz, D. Bergmann, C. Bridgeman, M. Chin, J. Christensen, R. Easter, J. Feichter, C. Land, A. Jeuken, and jellström, A Comparison of Large-scale Atmospheric Sulphate Aerosol Models (COSAM): Overview and highlights, Tellus, 53B, 615–645, 2001.Google Scholar
  326. Haywood, J.M, P. Francis, O. Dubovik, M. Glew, and B. Holben, Comparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and Sun photometers during SAFARI 2000, J. Geophys. Res., 108, 8471, doi:10.1029/2002JD002250, 2003a.Google Scholar
  327. Rau, J.A., and M.A.K. Khalil, Anthropogenic contributions to the carbonaceous content of aerosols over the Pacific Ocean, Atmos. Environ., 27A, 1297–1307, 1993.Google Scholar
  328. Covert, D.S., J.L. Gras, A. Wiedensohler, and F. Stratmann, Comparison of directly measured CCN with CCN modeled from the number-size distribution in the marine boundary layer during ACE 1 at Cape Grim, Tasmania, J. Geophys. Res., 103, 16,597–16,608, 1998.Google Scholar
  329. Koehler, K.A., S.M. Kreidenweis, P.J. DeMott, A.J. Prenni, C.M. Carrico, B. Ervens, and G. Feingold, Water activity and activation diameters from hygroscopicity data. Part II: Application to organic species, Atmos. Chem. Phys., 6, 795–809, 2006.Google Scholar
  330. Andreae, M.O., R.J. Charlson, F. Bruynseels, H. Storms, R.E. van Grieken, and W. Maenhaut, Internal mixture of sea salt, silicates and excess sulfate in marine aerosols, Science, 232, 1620–1623, 1986.Google Scholar
  331. Yin, Y., Z. Levin, T.G. Reisin, and S. Tzivion, The effects of giant condensation nuclei on the development of precipitation in convective clouds – A numerical study, Atmos. Res., 53, 91–116, 2000a.Google Scholar
  332. Kleeman, M.J., and G.R. Cass, Source contributions to the size and composition distribution of urban particulate air pollution, Atmos. Environ., 32, 2803–2816, 1998.Google Scholar
  333. Braham, R.R., and P. Spyers-Duran, Ice nucleus measurements in an urban atmosphere, J. Appl. Meteor., 13, 940–945, 1974.Google Scholar
  334. Reid, J.S., H.H. Jonsson, H.B. Maring, A. Smirnov, D.L. Savoie, S.S. Cliff, E.A. Reid, J.M. Livingston, M.M. Meier, O. Dubovik, and S.C. Tsay, Comparison of size and morphological measurements of coarse mode dust particles from Africa, J. Geophys. Res., 108, 8593, doi:10.1029/2002JD002485, 2003.Google Scholar
  335. Dentener, F.J., G.R. Carmichael, Y. Zhang, J. Lelieveld, and P.J. Crutzen, Role of mineral aerosol as a reactive surface in the global troposphere, J. Geophys. Res., 101, 22,869–22,889, 1996.Google Scholar
  336. Gelencsér, A., A. Hoffer, Z. Krivácsy, G. Kiss, A. Molnár, and E. Mészáros, On the possible origin of humic matter in fine continental aerosol, J. Geophys. Res., 107, 4137, doi:10.1029/2001JD001299, 2002.Google Scholar
  337. Hoppel, W.A., J.W. Fitzgerald, G.M. Frick, R.E. Larson, and E.J. Mack, Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean, J. Geophys. Res., 95, 3659–3686, 1990.Google Scholar
  338. Reid, J.S., R. Koppmann, T.F. Eck, and D.P. Eleuterio, A review of biomass burning emissions. Part II: Intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799–825, 2005.Google Scholar
  339. Whitby, K.T., B.Y.H. Liu, and R.B. Husar, Aerosol size distribution of Los Angeles smog, J. Colloid and Interface Sci., 39, 177–204, 1972.Google Scholar
  340. Petzold, A, M. Gysel, X. Vancassel, R. Hitzenberger, H. Puxbaum, S. Vrochticky, E., Weingartner, U. Baltensperger, and P. Mirabel, On the effects of organic matter and sulphur-containing compounds on the CCN activation of combustion particles, Atmos. Chem. Phys., 5, 3187–3203, 2005.Google Scholar
  341. DeMott, P.J., K. Sassen, M.R. Poellet, D. Baumgardner, D.C. Rogers, S.D. Brooks, A.J. Prenni, and S.M. Kreidenweis, African dust aerosols as atmospheric ice nuclei, Geophys. Res. Lett,. 30(14), 1732, doi:10.1029/2003GL017410, 2003a.Google Scholar
  342. Lewis, E.R., and S.E. Schwartz, Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models – A Critical Review, 413 p., American Geophysical Union, Washington, DC, 2004.Google Scholar
  343. Whitby, K.T., Physical characteristics of sulfur aerosols, Atmos. Environ., 12, 135–159, 1978.Google Scholar
  344. Gong, S.L., and L.A. Barrie, Simulating the impact of sea salt on global nss sulphate aerosols, J. Geophys. Res., 108, 4516, doi:1029/2002JD003181, 2003.Google Scholar
  345. Endresen, O., E. Sorgard, J.K. Sundet, S.B. Dalsoren, I.S.A. Isaksen, T.F. Berglen, and G. Gravir, Emission from international sea transportation and environmental impact, J. Geophys. Res., 108, 4560, doi:10.1029/2002JD002898, 2003.Google Scholar
  346. Maria, S.F., L.M. Russell, M.K. Gilles, and S.C.B. Myneni, Organic aerosol growth mechanisms and their climate-forcing implications, Science, 306, 1921–1924, 2004.Google Scholar
  347. Penner, J.E., M.O. Andreae, H. Annegarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy, J. Nganga, and G. Pitari, Aerosols, their direct and indirect effects, in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson, pp. 289–348, Cambridge University Press, Cambridge, UK, and New York, NY, USA, 2001.Google Scholar
  348. Werner, M., I. Tegen, S.P. Harrison, K.E. Kohfeld, I.C. Prentice, Y. Balkanski, H. Rodhe, and C. Roelandt, Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions, J. Geophys. Res., 107, 4744, doi:10.1029/2002JD002365, 2002.Google Scholar
  349. Vignati, E., G. de Leeuw, and R. Berkowicz, Modeling coastal aerosol transport and effects of surf-produced aerosols on processes in the marine atmospheric boundary layer, J. Geophys. Res., 106, 20,225–20,238, 2001.Google Scholar
  350. Tervahattu, H., K. Hartonen, V.M. Kerminen, K. Kupiainen, P. Aarnio, T. Koskentalo, A.F. Tuck, and V. Vaida, New evidence of an organic layer on marine aerosols, J. Geophys. Res., 107, 4053, doi:10.1029/2000JD000282, 2002a.Google Scholar
  351. Tegen, I., S.P. Harrison, K. Kohfeld, I.C. Prentice, M. Coe, and M. Heimann, Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study, J. Geophys. Res., 107, 4576, doi:10.1029/2001JD000963, 2002.Google Scholar
  352. Andreae, M.O., E. Atlas, H. Cachier, W.R. Cofer, III, G.W. Harris, G. Helas, R. Koppmann, J.P. Lacaux, and D.E. Ward, Trace gas and aerosol emissions from savanna fires, in Biomass Burning and Global Change, edited by J.S. Levine, pp. 278–295, MIT Press, Cambridge, MA, 1996.Google Scholar
  353. Middlebrook, A.M., D.M. Murphy, and D.S. Thomson, Observations of organic material in individual marine particles at Cape Grim during the First Aerosol Characterization Experiment (ACE 1), J. Geophys. Res., 103, 16,475–16,483, 1998.Google Scholar
  354. Birmili, W., A. Wiedensohler, J. Heintzenberg, and K. Lehmann, Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology, J. Geophys. Res., 106, 32,005–32,018, 2001.Google Scholar
  355. Jaenicke, R., Abundance of cellular material and proteins in the atmosphere, Science, 308, 73–73, 2005.Google Scholar
  356. Ten Brink, H., W. Maenhaut, R. Hitzenberger, T. Gnauk, G. Spindler, A. Even, X.G. Chi, H. Bauer, H. Puxbaum, J.P. Putaud, J. Tursic, and A. Berner, INTERCOMP2000: The comparability of methods in use in Europe for measuring the carbon content of aerosol, Atmos. Environ., 38, 6507–6519, 2004.Google Scholar
  357. Eagan, R.C., P.V. Hobbs, and L.F. Radke, Measurements of cloud condensation nuclei and cloud droplet size distributions in the vicinity of forest fires, J. Appl. Meteor., 13, 553–557, 1974b.Google Scholar
  358. Graham, B., P. Guyon, P. Taylor, P. Artaxo, W. Maenhaut, M.M. Glovsky, R.C. Flagan, and M.O. Andreae, Organic compounds present in the natural Amazonian aerosol: Characterization by gas chromatography–mass spectrometry, J. Geophys. Res., 108, 4766, doi:10.1029/2003JD003990, 2003b.Google Scholar
  359. Henning, S., E. Weingartner, M. Schwikowski, H.W. Gaggeler, R. Gehrig, K.P. Hinz, A. Trimborn, B. Spengler, and U. Baltensperger, Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfraujoch (3580 m asl), J. Geophys. Res., 108, 4030, doi:10.1029/2002JD002439, 2003.Google Scholar
  360. Ross, K.E., S.J. Piketh, R.T. Bruintjes, R.P. Burger, R.J. Swap, and H.J. Annegarn, Spatial and seasonal variations in CCN distribution and the aerosol-CCN relationship over southern Africa, J. Geophys. Res., 108, 8481, doi:10.1029/2002JD002384, 2003.Google Scholar
  361. Hegg, D.A., S. Gao, W. Hoppel, G. Frick, P. Caffrey, W.R. Leaitch, N. Shantz, J. Ambrusko, and T. Albrechcinski, Laboratory studies of the efficiency of selected organic aerosols as CCN, Atmos. Res., 58, 155–166, 2001.Google Scholar
  362. Roberts, G.C., M.O. Andreae, J. Zhou, and P. Artaxo, Cloud condensation nuclei in the Amazon Basin: “Marine” conditions over a continent? Geophys. Res. Lett., 28, 2807–2810, 2001.Google Scholar
  363. Twomey, S., Composition of cloud nuclei, J. Atmos. Sci., 28, 377–381, 1971.Google Scholar
  364. Guyon, P., B. Graham, J. Beck, O. Boucher, E. Gerasopoulos, O.L. Mayol-Bracero, G.C. Roberts, P. Artaxo, and M.O. Andreae, Physical properties and concentration of aerosol particles over the Amazon tropical forest during background and biomass burning conditions, Atmos. Chem. Phys., 3, 951–967, 2003a.Google Scholar
  365. Giebl, H., A. Berner, G. Reischl, H. Puxbaum, A. Kasper-Giebl, and R. Hitzenberger, CCN activation of oxalic and malonic acid test aerosols with the University of Vienna cloud condensation nuclei counter, J. Aerosol Sci., 33, 1623–1634, 2002.Google Scholar
  366. Leck, C., M. Norman, E.K. Bigg, and R. Hillamo, Chemical composition and sources of the high Arctic aerosol relevant for fog and cloud formation, J. Geophys. Res., 107, 4135, doi:10.1029/2001JD001463, 2002.Google Scholar
  367. Broekhuizen, K., P.P. Kumar, and J.P.D. Abbatt, Partially soluble organics as cloud condensation nuclei: Role of trace soluble and surface active species, Geophys. Res. Lett., 31, 2004.Google Scholar
  368. Cofala, J., M. Amann, and R. Mechler, Scenarios of World Anthropogenic Emissions of Air Pollutants and Methane upto 2030, International Institute for Applied Systems Analysis (IIASA), 2005.Google Scholar
  369. Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson, (Eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK, and New York, NY, Cambridge University Press, USA, 881 p., 2001.Google Scholar
  370. Ito, A., and J.E. Penner, Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000, Global Biogeochem. Cycles, GB2028, doi:10.1029/2004GB002374, 2005.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Meinrat O. Andreae
    • 1
  • Dean A. Hegg
    • 2
  • Urs Baltensperger
    • 3
  1. 1.Max Planck Institute for ChemistryMainzGermany
  2. 2.University of WashingtonSeattleUSA
  3. 3.Laboratory of Atmospheric ChemistryPaul Scherrer InstitutVilligenSwitzerland

Personalised recommendations