Scale Model Flames for Determining the Heat Release Rate from Burning Polymers

  • Gregory T. Linteris
  • Ian Rafferty

Abstract

The utility of flame size for the assessment of the heat release rate of burning polymers has been studied. Six polymers were tested in the NIST cone calorimeter to determine their heat release rate, and their flame height, area, and volume. A reduced-scale burner was developed for producing non-flickering, laminar flames, and tests were conducted with four gases, three liquids, and three polymers; subsequent automated image analyses again determined the flame size. The scaling for the flame size was shown to be reasonably well described by Froude modeling for turbulent pool fires or by laminar jet diffusion flame theory.

Keywords

Heat release rate polymers fire cone calorimeter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Babrauskas, R.D. Peacock, Fire Safety J. 18 (3) (1992) 255–272.CrossRefGoogle Scholar
  2. 2.
    B.A.L. Ostman, I.G. Svensson, J. Blomqvist, Fire Mater. 9 (4) (1985) 176–184.CrossRefGoogle Scholar
  3. 3.
    A. Tewarson, Flammability of polymers and organic liquids, Part I, Burning intensity, FMRC Serial 22429, Factory Mutual Research Corp., Norwood, MA, 1975.Google Scholar
  4. 4.
    Lyon, R., FAA, Personal Communication, 2003.Google Scholar
  5. 5.
    L. Orloff, J. de Ris, Proc. Combust. Inst. 19 (1982) 885–895.Google Scholar
  6. 6.
    E. Zukoski, Fluid dynamic aspects of room fires, In: Fire Safety Science: Proc. of the First International Symp., Hemisphere, New York, 1984, pp. 1–30.Google Scholar
  7. 7.
    B.J. McCaffrey, Flame height, In: SFPE handbook of fire protection engineering, SFPE (Ed.), National Fire Protection Assoc., Quincy, MA, 1988, pp. 298–305.Google Scholar
  8. 8.
    J.G. Quintiere, Fire Safety J. 15 (1) (1989) 3–29.CrossRefGoogle Scholar
  9. 9.
    S.P. Burke, T.E.W. Schumann, Ind. Eng. Chem. 20 (10) (1928) 998–1004.CrossRefGoogle Scholar
  10. 10.
    F.G. Roper, Combust. Flame 29 (3) (1977) 219–226.CrossRefGoogle Scholar
  11. 11.
    W.H. Twilley, V. Babrauskas, User’s guide for the cone calorimeter, SP-745, National Institute of Standards and Technology, Gaithersburg, MD, 1988.Google Scholar
  12. 12.
    C. Huggett, Fire Mater. 4 (2) (1980) 61–65.CrossRefGoogle Scholar
  13. 13.
    B. Hirst, K. Booth, Fire Technol. 13 (4) (1977) 296–315.CrossRefGoogle Scholar
  14. 14.
    M.K. Donnelly, W.L. Grosshandler, Suppression of fires exposed to an external radiant flux, NIST IR 6827, National Institute of Standards and Technology, Gaithersburg MD, 2001.Google Scholar
  15. 15.
    G.T. Linteris, G.W. Gmurczyk, Prediction of HF formation during suppression, In: Fire suppression system performance of alternative agents in aircraft engine and dry bay laboratory simulations, R.G. Gann (Ed.), National Institute of Standards and Technology, Gaithersburg, MD, 1995, pp. 201–318.Google Scholar
  16. 16.
    L. Orloff, Proc. Combust. Inst. 18 (1981) 549–583.Google Scholar
  17. 17.
    V. Babrauskas, W.H. Twilley, W.J. Parker, Fire Mater. 17 (2) (1993) 51–63.CrossRefGoogle Scholar
  18. 18.
    R.E. Mitchell, A.F. Sarofim, L.A. Clomburg, Combust. Flame 37 (3) (1980) 227–244.CrossRefGoogle Scholar
  19. 19.
    A. Gomez, G. Sidebotham, I. Glassman, Combust. Flame 58 (1) (1984) 45–57.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Gregory T. Linteris
    • 1
  • Ian Rafferty
  1. 1.Building and Fire Research Laboratory National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations