Stochasticity Favoring the Effects of the R&D Strategies of the Firms

  • Alberto A. Pinto
  • Bruno M. P. M. Oliveira
  • Fernanda A. Ferreira
  • Flávio Ferreira

Summary

We present stochastic dynamics on the production costs of Cournot competitions, based on perfect Nash equilibria of nonlinear R&D investment strategies to reduce the production costs of the firms at every period of the game. We analyse the effects that the R&D investment strategies can have in the profits of the firms along the time. We observe that, in certain cases, the uncertainty can improve the effects of the R&D strategies in the profits of the firms due to the non-linearity of the profit functions and also of the R&D parameters.

Keywords

Nash Rium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir R, Evstigneev I, Wooders J (2001) Noncooperative versus cooperative R&D with endogenous spillover rates. Core Discussion Paper 2001/50, Louvain-la-Neuve, BelgiumGoogle Scholar
  2. 2.
    Bischi GI, Gallegati M, Naimzada A (1999) Symmetry-breaking bifurcations and representative firm in dynamic duopoly games. Annals of Operations Research 89:253–272MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brander JA, Spencer BJ (1983) Strategic commitment with R&D: the symmetric case. The Bell Journal of Economics 14:225–235CrossRefGoogle Scholar
  4. 4.
    Pinto AA, Oliveira B, Ferreira FA, Ferreira M (2007) Investing to survive in a duopoly model. In: Machado JT, Patkai B, Rudas IJ (eds) Intelligent Engineering Systems and Computational Cybernetics. Springer, New YorkGoogle Scholar
  5. 5.
    Qiu DL (1997) On the dynamic efficiency of Bertrand and Cournot equilibria. Journal of Economic Theory 75:213–229MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Singh N, Vives X (1984) Price and quantity competition in a differentiated duopoly. RAND Journal of Economics 15:546–554CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alberto A. Pinto
    • 1
  • Bruno M. P. M. Oliveira
    • 1
    • 2
  • Fernanda A. Ferreira
    • 1
    • 3
  • Flávio Ferreira
    • 3
  1. 1.Departamento de Matemática Pura, Faculdade de Ci ências daUniversidade do PortoPortoPortugal
  2. 2.Faculdade de Ci ências da Nutri ção eAlimenta ção da Universidade do PortoPortoPortugal
  3. 3.Departamento de MatemáticaESEIG — Instituto Politécnico do PortoVila do CondePortugal

Personalised recommendations