Skip to main content

Fundamental Equations and Solutions

  • Chapter
  • First Online:
Modern Fluid Dynamics

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 87))

Abstract

Every other day one may observe puzzling fluid mechanics phenomena. Such counter-intuitive examples include: (a) Keeping the tailgate of a pick-up truck up reduces aerodynamic drag (why?) and hence saves gasoline; although, most drivers intentionally keep it down and even install “airflow” nets to retain cargo when accelerating. (b) Under otherwise identical conditions, it is easy to blow out a candle but nearly impossible to suck it out. Why? (c) Very high (horizontal) winds can lift pitched roofs off houses. How? (d) When bringing a spoon near a jet, e.g., faucet stream, it gets sucked into the stream. Try it out and explain! (e) Chunks of metal are torn out from ship propellers at high speeds after a long period of time in operation. Why? (f) The long hair of a girl driving a convertible is being pushed into her face rather than swept back. How come? (g) A snowstorm leaves a cavity in front of a pole or tree and deposits snow behind the “vertical cylinder.” Impossible? (h) Three-dimensional effects in river bends create unusual (axial) velocity profiles right after the bend and subsequently, lateral material transport results in shifting riverbeds. Explain! (i) Certain non-Newtonian fluids when stirred in an open container climb up the rotating rod, rather than forming a depressed, parabolic free surface. Weird! (j) Airplanes flying through microbursts (or high up in the blue sky) may crash. What is happening during these two very different weather types? (k) Racecar (and motorcycle) tires are hardly threaded but passenger cars are. Why? (l) Consider a tsunami (Japanese for “great harbor wave”) hitting either a very shallow shore or a deep sea near the shoreline. Describe cause-and-effect for these two scenarios. (m) Wildfires spread rapidly because of their own local weather pattern they create. Describe the underlying convection system, and how “back-fires” work. (n) A very small amount of carbon nanotubes added to a liquid increases measurably the apparent (or effective) thermal conductivity, k, of the dilute mixture (called a nanofluid) when compared to k [W/(m K)] of the pure base fluid. Why? (o) Gas flow in microchannels may exhibit significantly higher flow rates than predicted by conventional theory. What’s happening?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement Kleinstreuer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kleinstreuer, C. (2010). Fundamental Equations and Solutions. In: Modern Fluid Dynamics. Fluid Mechanics and Its Applications, vol 87. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8670-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8670-0_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8669-4

  • Online ISBN: 978-1-4020-8670-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics