Skip to main content

Sugarcane and Ethanol Production and Carbon Dioxide Balances

  • Chapter
Biofuels, Solar and Wind as Renewable Energy Systems

Abstract

Ethanol fuel has been considered lately an efficient option for reducing greenhouse gases emissions. Brazil has now more than 30 years of experience with large-scale ethanol production. With sugarcane as feedstock, Brazilian ethanol has some advantages in terms of energy and CO2 balances. The use of bagasse for energy generation contributes to lower greenhouse gases emissions. Although, when compared with gasoline, the use of sugarcane ethanol does imply in reduction of GHG emissions, Brazilian contribution to emission reductions could be much more significant, if more efforts were directed for reduction of Amazon deforestation. The trend however is to encourage ethanol production

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almeida, A.C. & Soares, J.V. (2005). Comparação entre uso de àgua em plantações de Eucayptus grandis e floresta ombròfila densa (Mata Atlântica) na costa leste do Brasil. Revista àrvore, 27, 159–170.

    Google Scholar 

  • Aneel. Agˆncia Nacional de Energia Elètrica. www.aneel.gov.br

    Google Scholar 

  • Anfavea. Associação Nacional de Fabricantes de Veìculos Automotores – Brazil (2007). Anuàrio estatìstico. Retrieved July 18, 2007, from http://www.anfavea.com.br/anuario.html

    Google Scholar 

  • Azania, A.A.P.M., Marques, M.O, Pavani, M.C.M.D. & Azania, C.A.M. (2003). Germinação de sementes de Sida rhombipholia e Brachiaria decumbens influenciada por vinhaça, flegmaça e òleo de fùsel. Planta daninha, 21, 443–449.

    Google Scholar 

  • Ballester, M.V.R., Camargo, P.B., Carvalho, F.P., Hornink, S., Martinelli, L.A., Moraes, J.M. & Krusche, A.V. (1997). Spatial and temporal water quality variability in the Piracicaba river basin, Brazil. Journal of the American Water Resources Association, 33, 1117–1123

    Article  Google Scholar 

  • Beeharry, R.P. (1996). Extended sugarcane biomass utilisation for exportable electricity production in Mauritius. Biomass and Bioenergy, 11, 441–449

    Article  Google Scholar 

  • Beeharry, R.P. (2001). Carbon balance of sugarcane bioenergy systems. Biomass and bioenergy, 20, 361–370.

    Article  CAS  Google Scholar 

  • Braunbeck, O., Bauen, A., Rosillo-Calle, F. & Cortez, L. (1999). Prospects for green cane harvesting and cane residue use in Brazil. Biomass and Bioenergy, 17, 495–506.

    Article  Google Scholar 

  • Cancado, J.E.D. (2003). A poluição atmosfèrica e sua relação com a saùde humana na região canavieira de Piracicaba – SP.

    Google Scholar 

  • Cardenas, G.J. (1993). Ethanol from bagasse as fuel, contribution to lowering of CO2. Ingenieria-Quimica, 25, 113–116.

    CAS  Google Scholar 

  • Cerri, C.E.P., Sparovek, G., Bernoux, M., Easterling, W.E., Melillo, M. & Cerri, C.C. (2007). Tropical agriculture and global warming impacts and mitigation options. Scientia Agricola, 64, 83–99.

    Article  CAS  Google Scholar 

  • Cortez, L.A.B., Freire, W.J. & Rosillo-Calle, F. (1998). Biodigestion of vinasse in Brazil, Internacional Sugar Journal, 100, 403–409.

    CAS  Google Scholar 

  • CTC – Centro de Tecnologia Canavieira. Personal communication with Hèlcio Lamônica on July 20, (2007).

    Google Scholar 

  • Dias de Oliveira, M.E., Vaughan, B.E. & Rykiel, Jr. E.J. (2005). Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. Bioscience, 55, 593–602.

    Article  Google Scholar 

  • Ereno, D. (2007). àlcool de cellulose. Revista Pesquisa Fapesp. retrieved on line on June 14, 2007, from http://www.revistapesquisa.fapesp.br/?art=3169&bd=1&pg=1&lg

    Google Scholar 

  • Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O’Hare, M. & Kammen, D.M. (2006). Ethanol can contribute to energy and environmental goals. Science, 311, 506–508.

    Article  CAS  Google Scholar 

  • Fearnside, P.M., Graça, P.M.L.A. & Rodrigues, F.J.A. (2001). Burning of Amazonian rainforests: Burning efficiency and charcoal formation in forest cleared for cattle pasture near Manaus, Brazil. Forest Ecology and Management, 146, 115–128.

    Article  Google Scholar 

  • Fearnside, P.M. (2002). Greenhouse gas emissions from a hydroelectric reservoir (Brazil’s Tucuruì dam) and the energy policy implications. Water, Air, and Soil Pollution, 133, 69–96.

    Article  CAS  Google Scholar 

  • Giampietro, M., Ulgiati, S. & Pimentel, D. (1997). Feasibility of large-scale biofuel production. Bioscience, 47, 587–600.

    Article  Google Scholar 

  • Gloeden, E. 1994. Monitoramento da qualidade das àguas das zonas não saturadas em àrea de fertilização de vinhaça. Dissertation, Institute of Geociencies, Universidade de São Paulo.

    Google Scholar 

  • Godoi, A.F.L., Ravindra, K., Godoi, R.H.M., Andrade, S.J., Santiago-Silva, M., Vaeck, L.V. & Grieken, R.N. (2004). Fast chromatographic determination of polycyclic aromatic hydrocarbons in aerosol samples from sugar cane burning. Journal of Chromatography A, 1027, 49–53

    Article  CAS  Google Scholar 

  • Dondero, L. & Goldemberg, J. (2005). Environmental implications of converting light gas vehicles: the Brazilian experience. Energy Policy, 33, 1703–1708.

    Article  Google Scholar 

  • Goldemberg, J. (2007). Ethanol for a sustainable energy future. Science, 315, 808–810

    Article  CAS  Google Scholar 

  • Grande, P.C. (2007). Nùmeros Flexìveis. Edição online of Quatro Rodas magazine. Retrieved on July 10, 2007, from http://quatrorodas.abril.com.br/reportagens/conteudo_141385.shtml.

    Google Scholar 

  • Granato, E.F. (2003). Geração de energia atravès da biodigestão anaeròbica da vinhaça. Dissertaion, Universidade Estadual Paulista.

    Google Scholar 

  • Grupo Cosan – Brasil. Personal communication on 06/04/2003.

    Google Scholar 

  • Hassuda, S. (1989). Impactos da infiltração da vinhaça de cana no aquìfero Bauru. Dissertation, Institute of Geosciencies. University of São Paulo.

    Google Scholar 

  • Hoffert, M.I., Caldeira, K., Benford, G., Criswell, D.R., Green, C., Herzog, H., Jain, A.K., Kheshgi, H.S., Lackner, S., Lewis, J.S., Lightfoot, H.D., Manheimer, W., Mankins, J.C., Mauel, M.E., Perkins, L.J., Schlesinger, M.E., Volk, T. & Wigley T.M.L. (2002). Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science, 298, 981–987.

    Article  CAS  Google Scholar 

  • Kirby, K.R., Laurance, W.F., Albernaz, A.K., Schroth, G., Fearnside, O.M., Bergen, S., Venticinque, E.M. & Costa, C. (2006). The future of deforestation in Brazilian Amazon. Futures, 38, 432–453.

    Article  Google Scholar 

  • Kirchoff, W.M.J.H. (1991). Enhancements of CO and O3 from burning in sugarcane fields. Journal of Atmospheric Chemistry, 12, 87–102.

    Article  Google Scholar 

  • Krauter, S. & Ruthers, R. (2004). Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy. Renewable Energy, 29, 345–355.

    Article  CAS  Google Scholar 

  • Lima, M.A, Ligo, M.A.V., Cabral, O.M.R., Boeira, R.C., Pessoa, M.C.P.Y. & Neves, M.C. (1999). Emissao de gases de efeito estufa provenientes da queima de residuos agricolas no Brasil. (SP- Brazil: Embrapa Meio Ambiente).

    Google Scholar 

  • Macedo, I.C. (1998). Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil. Biomass and Bioenergy, 14, 77–81.

    Article  Google Scholar 

  • Marris, E. (2006). Drink the best and drive the rest. Nature, 444, 670–672.

    Article  CAS  Google Scholar 

  • Moreira, J.R. & Goldemberg, J. (1999). The alcohol program. Energy Policy, 27, 229–245

    Article  Google Scholar 

  • Moreira, J.R. (2007). Water use and impacts due ethanol production in Brazil. Presented at International conference at ICRISAT Campus, Hyderabad, India, 29–30 January 2007.

    Google Scholar 

  • Navarro, A.R., Sepùlveda, M. del C. & Rubio, M.C. (2000). Bio-concentration of vinasse from the alcoholic fermentation of sugar cane molasses. Water Management, 20, 581–585.

    CAS  Google Scholar 

  • Ortega, E., Ometto, A.R., Ramos, P.A.R., Anami, M.H., Lombardi, G. & Coelho, O.F. (2001). Emergy comparison of ethanol production in Brazil: traditional versus small distillery with food and electricity production. (Presented at the Second Biennial Emergy Analysis Research Conference: “Energy Quality and Transformities”.. Gainesville – FL).

    Google Scholar 

  • Ortiz L´opez, A.A. (1997). An´lise dos custos privados e sociais da eros˜ao do solo: o caso da Bacia do rio Corumbatai. Doctor’s dissertation. University of S˜ao Paulo – ESALQ, Piracicaba.

    Google Scholar 

  • Pimentel, D. & Pimentel, M. (1996). Food energy and society. (Colorado: University Press of Colorado)

    Google Scholar 

  • Rosa, L.P, & Ribeiro, S.K. (1998). Avoiding emissions of carbon dioxide through the use of fuels derived from sugarcane. Ambio, 6, 465–470.

    Google Scholar 

  • Rosa, L.P. & Schaeffer, R. (1995). Global warming potentials: the case of emissions from dams. Energy Policy, 23, 149–158.

    Article  Google Scholar 

  • Schlesinger, W.H. (1997). Biogeochemistry, an analysis of global change. (California: Academic Press)

    Google Scholar 

  • Sirvinskas, L.P. (2003). Manual de Direito Ambiental. (SP- Brazil: Editora Saraiva)

    Google Scholar 

  • Shapouri, H., Duffield, J.A. & Wang, N. (2002). The Energy Balance of Corn Ethanol: An Update. Washington (DC): Office of Energy Policy and New Uses. Agricultural Economic Report 814.

    Google Scholar 

  • Smeets, E., Junginger, M., Faaij, A., Walter, A. & Dolzan, P. (2006). Sustainability of Brazilian bioethanol. Utrecht University. Copernicus Institute. Report NWS-E-2006-110.

    Google Scholar 

  • Sparovek, G. & Schung, E. (2001). Temporal erosion-induced soil degradation and yield loss. Soil Science Society of America Journal, 65, 1479–1486.

    Google Scholar 

  • Trobish, K.H. (1992). Recent development in the treatment of chemical waste water in Europe. Water Science and Technology, 26, 319–322.

    Google Scholar 

  • van de Vate, J.F. (1997). Comparison of energy sources in terms of their full energy chain emission factors of greenhouse gases. Energy Policy, 25, 1–6.

    Article  Google Scholar 

  • Weir, K.L. (1998). Sugarcane fields: sources or sinks for greenhouse gas emissions? Australian Journal of Agricultural Research, 49, 1–9.

    Article  Google Scholar 

  • Weisser, D. (2007). A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy, 32, 1543–1559.

    Article  CAS  Google Scholar 

  • West, T.O. & Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems and Environment, 91, 217–232.

    Article  Google Scholar 

  • WWF-Brazil. (2006). Agenda elètrica sustentàvel 2020. Retrieved on June 29, 2007, from http://assets.wwf.org.br/downloads/wwf_energia_2ed_ebook.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Oliveira, M.D.D. (2008). Sugarcane and Ethanol Production and Carbon Dioxide Balances. In: Pimentel, D. (eds) Biofuels, Solar and Wind as Renewable Energy Systems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8654-0_9

Download citation

Publish with us

Policies and ethics