Sugarcane and Ethanol Production and Carbon Dioxide Balances

  • Marcelo Dias De Oliveira

Abstract

Ethanol fuel has been considered lately an efficient option for reducing greenhouse gases emissions. Brazil has now more than 30 years of experience with large-scale ethanol production. With sugarcane as feedstock, Brazilian ethanol has some advantages in terms of energy and CO2 balances. The use of bagasse for energy generation contributes to lower greenhouse gases emissions. Although, when compared with gasoline, the use of sugarcane ethanol does imply in reduction of GHG emissions, Brazilian contribution to emission reductions could be much more significant, if more efforts were directed for reduction of Amazon deforestation. The trend however is to encourage ethanol production

Keywords

Sugarcane ethanol CO2 mitigation CO2 balances bagasse Co-generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, A.C. & Soares, J.V. (2005). Comparação entre uso de àgua em plantações de Eucayptus grandis e floresta ombròfila densa (Mata Atlântica) na costa leste do Brasil. Revista àrvore, 27, 159–170.Google Scholar
  2. Aneel. Agˆncia Nacional de Energia Elètrica. www.aneel.gov.brGoogle Scholar
  3. Anfavea. Associação Nacional de Fabricantes de Veìculos Automotores – Brazil (2007). Anuàrio estatìstico. Retrieved July 18, 2007, from http://www.anfavea.com.br/anuario.htmlGoogle Scholar
  4. Azania, A.A.P.M., Marques, M.O, Pavani, M.C.M.D. & Azania, C.A.M. (2003). Germinação de sementes de Sida rhombipholia e Brachiaria decumbens influenciada por vinhaça, flegmaça e òleo de fùsel. Planta daninha, 21, 443–449.Google Scholar
  5. Ballester, M.V.R., Camargo, P.B., Carvalho, F.P., Hornink, S., Martinelli, L.A., Moraes, J.M. & Krusche, A.V. (1997). Spatial and temporal water quality variability in the Piracicaba river basin, Brazil. Journal of the American Water Resources Association, 33, 1117–1123CrossRefGoogle Scholar
  6. Beeharry, R.P. (1996). Extended sugarcane biomass utilisation for exportable electricity production in Mauritius. Biomass and Bioenergy, 11, 441–449CrossRefGoogle Scholar
  7. Beeharry, R.P. (2001). Carbon balance of sugarcane bioenergy systems. Biomass and bioenergy, 20, 361–370.CrossRefGoogle Scholar
  8. Braunbeck, O., Bauen, A., Rosillo-Calle, F. & Cortez, L. (1999). Prospects for green cane harvesting and cane residue use in Brazil. Biomass and Bioenergy, 17, 495–506.CrossRefGoogle Scholar
  9. Cancado, J.E.D. (2003). A poluição atmosfèrica e sua relação com a saùde humana na região canavieira de Piracicaba – SP.Google Scholar
  10. Cardenas, G.J. (1993). Ethanol from bagasse as fuel, contribution to lowering of CO2. Ingenieria-Quimica, 25, 113–116.Google Scholar
  11. Cerri, C.E.P., Sparovek, G., Bernoux, M., Easterling, W.E., Melillo, M. & Cerri, C.C. (2007). Tropical agriculture and global warming impacts and mitigation options. Scientia Agricola, 64, 83–99.CrossRefGoogle Scholar
  12. Cortez, L.A.B., Freire, W.J. & Rosillo-Calle, F. (1998). Biodigestion of vinasse in Brazil, Internacional Sugar Journal, 100, 403–409.Google Scholar
  13. CTC – Centro de Tecnologia Canavieira. Personal communication with Hèlcio Lamônica on July 20, (2007).Google Scholar
  14. Dias de Oliveira, M.E., Vaughan, B.E. & Rykiel, Jr. E.J. (2005). Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. Bioscience, 55, 593–602.CrossRefGoogle Scholar
  15. Ereno, D. (2007). àlcool de cellulose. Revista Pesquisa Fapesp. retrieved on line on June 14, 2007, from http://www.revistapesquisa.fapesp.br/?art=3169&bd=1&pg=1&lgGoogle Scholar
  16. Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O’Hare, M. & Kammen, D.M. (2006). Ethanol can contribute to energy and environmental goals. Science, 311, 506–508.CrossRefGoogle Scholar
  17. Fearnside, P.M., Graça, P.M.L.A. & Rodrigues, F.J.A. (2001). Burning of Amazonian rainforests: Burning efficiency and charcoal formation in forest cleared for cattle pasture near Manaus, Brazil. Forest Ecology and Management, 146, 115–128.CrossRefGoogle Scholar
  18. Fearnside, P.M. (2002). Greenhouse gas emissions from a hydroelectric reservoir (Brazil’s Tucuruì dam) and the energy policy implications. Water, Air, and Soil Pollution, 133, 69–96.CrossRefGoogle Scholar
  19. Giampietro, M., Ulgiati, S. & Pimentel, D. (1997). Feasibility of large-scale biofuel production. Bioscience, 47, 587–600.CrossRefGoogle Scholar
  20. Gloeden, E. 1994. Monitoramento da qualidade das àguas das zonas não saturadas em àrea de fertilização de vinhaça. Dissertation, Institute of Geociencies, Universidade de São Paulo.Google Scholar
  21. Godoi, A.F.L., Ravindra, K., Godoi, R.H.M., Andrade, S.J., Santiago-Silva, M., Vaeck, L.V. & Grieken, R.N. (2004). Fast chromatographic determination of polycyclic aromatic hydrocarbons in aerosol samples from sugar cane burning. Journal of Chromatography A, 1027, 49–53CrossRefGoogle Scholar
  22. Dondero, L. & Goldemberg, J. (2005). Environmental implications of converting light gas vehicles: the Brazilian experience. Energy Policy, 33, 1703–1708.CrossRefGoogle Scholar
  23. Goldemberg, J. (2007). Ethanol for a sustainable energy future. Science, 315, 808–810CrossRefGoogle Scholar
  24. Grande, P.C. (2007). Nùmeros Flexìveis. Edição online of Quatro Rodas magazine. Retrieved on July 10, 2007, from http://quatrorodas.abril.com.br/reportagens/conteudo_141385.shtml.Google Scholar
  25. Granato, E.F. (2003). Geração de energia atravès da biodigestão anaeròbica da vinhaça. Dissertaion, Universidade Estadual Paulista.Google Scholar
  26. Grupo Cosan – Brasil. Personal communication on 06/04/2003.Google Scholar
  27. Hassuda, S. (1989). Impactos da infiltração da vinhaça de cana no aquìfero Bauru. Dissertation, Institute of Geosciencies. University of São Paulo.Google Scholar
  28. Hoffert, M.I., Caldeira, K., Benford, G., Criswell, D.R., Green, C., Herzog, H., Jain, A.K., Kheshgi, H.S., Lackner, S., Lewis, J.S., Lightfoot, H.D., Manheimer, W., Mankins, J.C., Mauel, M.E., Perkins, L.J., Schlesinger, M.E., Volk, T. & Wigley T.M.L. (2002). Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science, 298, 981–987.CrossRefGoogle Scholar
  29. Kirby, K.R., Laurance, W.F., Albernaz, A.K., Schroth, G., Fearnside, O.M., Bergen, S., Venticinque, E.M. & Costa, C. (2006). The future of deforestation in Brazilian Amazon. Futures, 38, 432–453.CrossRefGoogle Scholar
  30. Kirchoff, W.M.J.H. (1991). Enhancements of CO and O3 from burning in sugarcane fields. Journal of Atmospheric Chemistry, 12, 87–102.CrossRefGoogle Scholar
  31. Krauter, S. & Ruthers, R. (2004). Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy. Renewable Energy, 29, 345–355.CrossRefGoogle Scholar
  32. Lima, M.A, Ligo, M.A.V., Cabral, O.M.R., Boeira, R.C., Pessoa, M.C.P.Y. & Neves, M.C. (1999). Emissao de gases de efeito estufa provenientes da queima de residuos agricolas no Brasil. (SP- Brazil: Embrapa Meio Ambiente).Google Scholar
  33. Macedo, I.C. (1998). Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil. Biomass and Bioenergy, 14, 77–81.CrossRefGoogle Scholar
  34. Marris, E. (2006). Drink the best and drive the rest. Nature, 444, 670–672.CrossRefGoogle Scholar
  35. Moreira, J.R. & Goldemberg, J. (1999). The alcohol program. Energy Policy, 27, 229–245CrossRefGoogle Scholar
  36. Moreira, J.R. (2007). Water use and impacts due ethanol production in Brazil. Presented at International conference at ICRISAT Campus, Hyderabad, India, 29–30 January 2007.Google Scholar
  37. Navarro, A.R., Sepùlveda, M. del C. & Rubio, M.C. (2000). Bio-concentration of vinasse from the alcoholic fermentation of sugar cane molasses. Water Management, 20, 581–585.Google Scholar
  38. Ortega, E., Ometto, A.R., Ramos, P.A.R., Anami, M.H., Lombardi, G. & Coelho, O.F. (2001). Emergy comparison of ethanol production in Brazil: traditional versus small distillery with food and electricity production. (Presented at the Second Biennial Emergy Analysis Research Conference: “Energy Quality and Transformities”.. Gainesville – FL).Google Scholar
  39. Ortiz L´opez, A.A. (1997). An´lise dos custos privados e sociais da eros˜ao do solo: o caso da Bacia do rio Corumbatai. Doctor’s dissertation. University of S˜ao Paulo – ESALQ, Piracicaba.Google Scholar
  40. Pimentel, D. & Pimentel, M. (1996). Food energy and society. (Colorado: University Press of Colorado)Google Scholar
  41. Rosa, L.P, & Ribeiro, S.K. (1998). Avoiding emissions of carbon dioxide through the use of fuels derived from sugarcane. Ambio, 6, 465–470.Google Scholar
  42. Rosa, L.P. & Schaeffer, R. (1995). Global warming potentials: the case of emissions from dams. Energy Policy, 23, 149–158.CrossRefGoogle Scholar
  43. Schlesinger, W.H. (1997). Biogeochemistry, an analysis of global change. (California: Academic Press)Google Scholar
  44. Sirvinskas, L.P. (2003). Manual de Direito Ambiental. (SP- Brazil: Editora Saraiva)Google Scholar
  45. Shapouri, H., Duffield, J.A. & Wang, N. (2002). The Energy Balance of Corn Ethanol: An Update. Washington (DC): Office of Energy Policy and New Uses. Agricultural Economic Report 814.Google Scholar
  46. Smeets, E., Junginger, M., Faaij, A., Walter, A. & Dolzan, P. (2006). Sustainability of Brazilian bioethanol. Utrecht University. Copernicus Institute. Report NWS-E-2006-110.Google Scholar
  47. Sparovek, G. & Schung, E. (2001). Temporal erosion-induced soil degradation and yield loss. Soil Science Society of America Journal, 65, 1479–1486.Google Scholar
  48. Trobish, K.H. (1992). Recent development in the treatment of chemical waste water in Europe. Water Science and Technology, 26, 319–322.Google Scholar
  49. van de Vate, J.F. (1997). Comparison of energy sources in terms of their full energy chain emission factors of greenhouse gases. Energy Policy, 25, 1–6.CrossRefGoogle Scholar
  50. Weir, K.L. (1998). Sugarcane fields: sources or sinks for greenhouse gas emissions? Australian Journal of Agricultural Research, 49, 1–9.CrossRefGoogle Scholar
  51. Weisser, D. (2007). A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy, 32, 1543–1559.CrossRefGoogle Scholar
  52. West, T.O. & Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems and Environment, 91, 217–232.CrossRefGoogle Scholar
  53. WWF-Brazil. (2006). Agenda elètrica sustentàvel 2020. Retrieved on June 29, 2007, from http://assets.wwf.org.br/downloads/wwf_energia_2ed_ebook.pdfGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Marcelo Dias De Oliveira
    • 1
  1. 1.Avenida 10, 1260, Rio Claro - SP - BrazilBrazil

Personalised recommendations