Can the Earth Deliver the Biomass-for-Fuel we Demand?

  • Tad W. Patzek

Abstract

In this work I outline the rational, science-based arguments that question current wisdom of replacing fossil plant fuels (coal, oil and natural gas) with fresh plant agrofuels. This 1:1 replacement is absolutely impossible for more than a few years, because of the ways the planet Earth works and maintains life. After these few years, the denuded Earth will be a different planet, hostile to human life. I argue that with the current set of objective constraints a continuous stable solution to human life cannot exist in the near-future, unless we all rapidly implement much more limited ways of using the Earth’s resources, while reducing the global populations of cars, trucks, livestock and, eventually, also humans.

Keywords

Agriculture agrofuel biomass biorefinery boundary crop ecology energy ethanol fuel production model mass balance net energy value plantation population sustainability thermodynamics tropics yield 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous 2007, Carving up the Congo, Report, Parts I – III, Greenpeace, Washington, DC, www.greenpeace.org/usa/news/rainforest-destruction-in-afriGoogle Scholar
  2. Badger, P. C. 2002, Trends in new crops and new uses, Chapter. Ethanol from Cellulose: A General Review, pp 17–21, ASHS Press, Alexandria, VA.Google Scholar
  3. Berner, R. A. 2001, Modeling atmospheric $O2$ over Phanerozoic time, Geochim. Cosmochim. Acta 65: 685–694.CrossRefGoogle Scholar
  4. Berner, R. A. 2003, The long-term carbon cycle, fossil fuels and atmospheric composition, Nature 426: 323–326.CrossRefGoogle Scholar
  5. Bird, R. B., Stewart, W. E., and Lightfoot, E. N. 1960, Transport phenomena, John Wiley & Sons, New York.Google Scholar
  6. Capra, F. 1996, The Web of Life, Anchor Books, A Division of Random House, Inc., New York.Google Scholar
  7. Cramer, W. et al. 1995, Net Primary Productivity – Model Intercomparison Activity, Report 5, IGBP/GAIM, Washington, DC, gaim.unh.edu/Products/Reports/Report_5/-report5.pdfGoogle Scholar
  8. Davis, M. 2002, Late Victorian Holocausts: El Niño Famines and the Making of the Third World, Verso, London.Google Scholar
  9. Domalski, E. S., Jobe Jr., T. L., and Milne, T. A. (eds.) 1987, Thermodynamic Data for Biomass Materials and Waste Components, The American Society of Mechanical Engineers, United Engineering Center, 345 East 47th Street, New York, 10017.Google Scholar
  10. Grimm, K. A. 1998, Phosphorites feed people: Finite fertlizer ores impact Canadian and global food security, The Monitor, www.eos.ubc.ca/personal/grimm/phosphorites.htmlGoogle Scholar
  11. Heinsch, F. A. et al. 2003, User’s Guide GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm, Report, NASA, Washington, DC, www.ntsg.ntsg.umt.edu/modis/-MOD17UsersGuide.pdfGoogle Scholar
  12. Hurtt. G. C., Rosentrater, L., Erolking, S., and Moore, B. 2001, Linking remote-sensing estimates of land cover and census statistics on land use to produce maps of land use of the conterminous united states, Global Biogeochem. Cycles 15(3): 673–685.CrossRefGoogle Scholar
  13. Jacques, K. A., Lyons, T. P., and Kelsall, D. R. (eds.) 2003, The Alcohol Textbook, Nottingham University Press, Nottingham, CB, 4 edition.Google Scholar
  14. Khosla, V. 2006, Biofuels: Think outside the Barrel, www.khoslaventures.com/presentations/-Biofuels.Apr2006.ppt, Also see the video version at video.google.com/videoplay? docid$=$-570288889128950913Google Scholar
  15. Lee, D.-K., Owens, V. N., Boe, A., and Jeranyama, P. 2007, Composition of Herbaceous Biomass Feedstocks, Report SGINCI-07, Plant Science Department, North Central Sun Grant Center, South Dakota State University, Box 2140C, Brookings, SD 57007.Google Scholar
  16. Lovelock, J. 1979, Gaia – A new look at life on the Earth, Oxford University Press, Oxford, GB.Google Scholar
  17. Lovelock, J. 1988, The Ages of Gaia, A Biography of Our Living Earth, W. W. Norton & Co. Inc., New York.Google Scholar
  18. Lugo, A. E. and Brown, S. 1986, Steady state terrestrial ecosystems and the global carbon cycle, Vegetatio 68: 83–90.Google Scholar
  19. Mokany, K., Raison, R. J., and Prokushkin, A. S. 2006, Critical analysis of root: shoot ratios in terrestrial biomes, Glob. Chang. Biol. 12: 84–96.CrossRefGoogle Scholar
  20. Montgomery, D. R. 2007, Soil erosion and agricultural sustainability, PNAS 104(33): 13268–13272.Google Scholar
  21. Napitupulu, M. and Ramu, K. L. V. 1982, Development of the Segara Anakan area of Central Java, in Proceedings of the Workshop on Coastal Resources Management in the Cilacap Region, pp 66–82, Gadjah Mada University, Yogyakarta.Google Scholar
  22. Osborne, J. W. 1970, The Silent Revolution: The Industrial Revolution in England as a Source of Cultural Change, Charles Scribner’s Sons, New York.Google Scholar
  23. Page, S. E., Siegert, F., Rieley, J. O., V. Boehm, H.-D., Jaya, A., and Limin, S. 2002, The amount of carbon released from peat and forest fires in Indonesia during 1997, Nature 420(6911): 61–65.CrossRefGoogle Scholar
  24. Patzek, L. J. and Patzek, T. W. 2007, The Disastrous Local and Global Impacts of Tropical Biofuel Production, Energy Tribune March: 19–22.Google Scholar
  25. Patzek, T. W. 2004, Thermodynamics of the corn-ethanol biofuel cycle, Critical Reviews in Plant Sciences 23(6): 519–567, An updated web version is at http://-petroleum.berkeley.edu/papers/patzek/CRPS416-Patzek-Web.pdf.CrossRefGoogle Scholar
  26. Patzek, T. W. 2006a, A First-Law Thermodynamic Analysis of the Corn-Ethanol Cycle, Natural Resources Research 15(4): 255–270.CrossRefGoogle Scholar
  27. Patzek, T. W. 2006b, Letter, Science 312(5781): 1747.Google Scholar
  28. Patzek, T. W. 2006c, The Real Biofuels Cycles, Online Supporting Material for Science Letter, Available at petroleum.berkeley.edu/patzek/BiofuelQA/Materials/RealFuelCycles-Web.pdfGoogle Scholar
  29. Patzek, T. W. 2007, Earth, Humans and Energy, CE170 Class Reader, University of Califonia, Berkeley.Google Scholar
  30. Patzek, T. W. and Pimentel, D. 2006, Thermodynamics of energy production from biomass, Critical Reviews in Plant Sciences 24(5–6): 329–364, Available at http://-petroleum.berkeley.edu/papers/patzek/CRPS-BiomassPaper.pdfGoogle Scholar
  31. Perlack, R. D., Wright, L. L., Turhollow, A. F., L., G.R., Stokes, B. J., and Erbach, D. C. 2005, Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply, Joint Report, Prepared by U.S. Department of Energy, U.S. Department of Agriculture, Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831–6285, Managed by: UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725 DOE/GO-102005-2135 ORNL/TM-2005/66Google Scholar
  32. Randerson, J. T., Chapin, F. S., Harden, J. W., Neff, J. C., and Harmone, M. E. 2001, Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems, Ecological Applications 12(4): 2937–947.Google Scholar
  33. Reichle, D. E., O’Neill, R. V., and Harris, W. F. 1975, Unifying concepts in ecology, Chapter Principles of energy and material exchange in ecosystems, pp. 27–43, Dr. W. Junk B. V. Publishers, The Hague, The Netherlands.Google Scholar
  34. Ricklefs, R. E. (ed.) 1990, Ecology, W. H. Freeman & Company, New York, 3 edition.Google Scholar
  35. Roberts, G. and Wooster, M. J. 2007, New perspectives on African biomass burning dynamics, EOS 88(38): 369–370.CrossRefGoogle Scholar
  36. Running, S. W., Thornton, P. E., et al. 2000, Methods in Ecosystem Science, Chapter. Global terrestrial gross and net primary productivity from the Earth Observing System, pp. 44–57, Springer Verlag, New York.Google Scholar
  37. Ryan, M. G. 1991, Effects of climate change on plant respiration, Ecolo. Soc. Am. 1(2): 157–167.Google Scholar
  38. Saha, B. C., Iten, L. B., Cotta, M. A., and Wu, Y. V. 2005, Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol, Process Biochem. 40: 3693–3700.CrossRefGoogle Scholar
  39. Schimel, D. and Baker, D. 2002, The wildfire factor, Nature 420(6911): 29–30.CrossRefGoogle Scholar
  40. Schmidt, A., Zschetzsche, A., and Hantsch-Linhart, W. 1993, Analyse von biogenen Brennstoffen, Report, TU Wien, Institut für Verfahrens-, Brennstoff- und Umwelttechnik, Vienna, Austria, www.vt.tuwien.ac.at/Biobib/fuel98.htmlGoogle Scholar
  41. Smil, V. 1985, Carbon – Nitrogen – Sulfur – Human Interferences in Grand Biospheric Cycles, Plenum Press, New York and London.Google Scholar
  42. Songa, C. and Woodcock, C. E. 2003, A regional forest ecosystem carbon budget model: Impacts of forest age structure and landuse history, Ecol. Modell. 164: 33–47.CrossRefGoogle Scholar
  43. Steynberg, A. P. and Nel, H. G. 2004, Clean coal conversion options using Fischer-Tropsch technology, Fuel 83(6): 765–770.CrossRefGoogle Scholar
  44. Stocking, M. A. 2003, Tropical Soils and Security: The Next 50 years, Science 302(5649): 1356–1359.CrossRefGoogle Scholar
  45. von Englehardt, W., Goguel, J., Hubbert, M. K., Prentice, J. E., Price, R. A., and Trümpy, R. 1975, Earth Resources, Time, and Man - A Geoscience Perspective, Environ. Geol. 1: 193–206.CrossRefGoogle Scholar
  46. Webster 1993, Webster’s Third New International Dictionary of the English Language – Unabridged, Encyclopædia Britannica, Inc., Chicago.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Tad W. Patzek
    • 1
  1. 1.Department of Civil and Environmental EngineeringThe University of CaliforniaBerkeley

Personalised recommendations