Organic and Sustainable Agriculture and Energy Conservation

  • Tiziano Gomiero
  • Maurizio G. Paoletti

Abstract

In the last decades biofuels have been regarded as an important source of renewable energy and at the same time as an option to curb greenhouse gas emissions. This is based on a number of assumptions that, on a close look, may be misleading, such as the supposed great energy efficiency of biofuels production. Large scale biofuels production may, on the contrary, have dramatic effects on agriculture sustainability and food security. In this chapter we explore the energy efficiency of organic farming in comparison to conventional agriculture, as well as the possible benefits of organic management in term of Green House Gasses mitigation.

Organic agriculture (along with other low inputs agriculture practices) results in less energy demand compared to intensive agriculture and could represent a mean to improve energy savings and CO2 abatement if adopted on a large scale. At the same time it can provide a number of important environmental and social services such as: preserving and improving soil quality, increasing carbon sink, minimizing water use, preserving biodiversity, halting the use of harmful chemicals so guaranteeing healthy food to consumers. We claim that more work should be done in term of research and investments to explore the potential of organic farming for reducing environmental impact of agricultural practices. However, the implications for the socio-economic system of a reduced productivity should be considered and suitable agricultural policies analysed.

The chapter is organised as follows: Section (17.1) provides the reader with a definition of organic agriculture (and sustainable agriculture) and a brief history of the organic movement in order to help the reader to better understand what is presented later on; Section (17.2) reviews a number of studies on energy efficiency in organic and conventional agriculture; Section (17.3) compares CO2 emissions from organic and conventional managed farming systems; Section (17.4) analyses the possible use of agricultural “waste” to produce cellulosic ethanol; Section (17.5) provides some comments concerning the possible production of biofuels from organically grown crops; Section (17.6) concludes the chapter presenting a summary of the review.

Keywords

organic agriculture conventional agriculture energy use GHGs emissions soil ecology biodiversity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, D. (2001). Nutritionists question study of organic food. Nature, 412, 666.CrossRefGoogle Scholar
  2. Allison, F. E. (1973). Soil organic matter and its role in crop production. (Elsevier, Amsterdam)CrossRefGoogle Scholar
  3. Altieri, M. 2002. Agroecology: the science of natural resource management for poor farmers in marginal environments. Agriculture, Ecosystems and Environment, 93, 1–24.CrossRefGoogle Scholar
  4. Altieri, M. (1987). Agroecology: The science of sustainable agriculture. (Westview Press, Boulder)Google Scholar
  5. Badgley, C., Moghtader, J., Quintero, E., Zakem, E., Chappell, J. M., Avilés-Vázquez, K., Samulon, A., & Perfecto, I. (2007). Organic agriculture and the global food supply. Renewable Agriculture and Food Systems, 22, 86–108.CrossRefGoogle Scholar
  6. Balfour, E. (1977). Towards a sustainable agriculture – The Living Soil. IFOAM conference in Switzerland in 1977, Retrieved 30 July 30 2007 from http://soilandhealth.org/ 01aglibrary/010116Balfourspeech.htmlGoogle Scholar
  7. Badger, P. C. (2002). Ethanol From Cellulose: A General Review. (In J. Janick, & A. Whipkey (Eds.), Trends in new crops and new uses (pp. 17–21). ASHS Press, Alexandria, VA).Google Scholar
  8. Bengtsson, J., Ahnstrom, J., & Weibull, A-C. (2005). The effects of organic agriculture on biodiversity and abundance: a meta-analysis. Journal of Applied. Ecology, 42, 261–269.CrossRefGoogle Scholar
  9. Bland, W. L. (1999). Toward integrated assessment in agriculture. Agricultural Systems, 60(3), 157–167.CrossRefGoogle Scholar
  10. Brandt, K., & Mølgaard, J.P. (2006). Food quality. (In P., Kristiansen, A., Taji, & J., Reganold (Eds), Organic agriculture. A global perspective. (pp. 305–328) CSIRO Publishing, Collingwood, Australia)Google Scholar
  11. Brandt, K., & Mølgaard, J. P. (2001). Organic agriculture: does it enhance or reduce the nutritional value of plant foods? Journal of the Science of Food and Agriculture, 81, 924–931.CrossRefGoogle Scholar
  12. Brussaard, L., de Ruiter, P. C., & Brown, G. G. (2007). Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems and Environment, 121, 233–244.CrossRefGoogle Scholar
  13. Carter, V. G., & Dale, T. (1975). Topsoil and civilization. (Univ. of Oklahoma Press, Revised edition)Google Scholar
  14. Castellini, C., Bastianoni, S., Granai, C., Dal Bosco, A., & Brunetti, M. (2006). Sustainability of poultry production using the emergy approach: Comparison of conventional and organic rearing systems. Agriculture, Ecosystems and Environment, 114, 343–350.CrossRefGoogle Scholar
  15. Cassman, K. (2007). Editorial response by Kenneth Cassman: can organic agriculture feed the world—science to the rescue? Renewable Agriculture and Food Systems, 22(2), 83–84.Google Scholar
  16. Codex Alimentarius. (2004). Guidelines for the production, processing, labelling and marketing of organically produced foods (GL 32 – 1999, Rev. 1 – 2001) Retrieved July 25 2007 from http://www.codexalimentarius.net/web/standard_list.do?lang=enGoogle Scholar
  17. Conford, P. (2001). The origins of the organic movement. (Floris Books, Glasgow, Great Britain).Google Scholar
  18. Coleman, D. C., Crossley, D.A.Jr., & Hendrix, P.F. (2004). Fundamentals of Soil Ecology. (Second Edition, Academic Press, Amsterdam)Google Scholar
  19. Cormack, W. F. (2000). Energy use in organic farming systems. Final report for project OF0182 for the Department for Environment, Food and Rural Affairs. Retrieved August 12 2007 from http://orgprints.org/8169/01/OF0182_181_FRP.pdfGoogle Scholar
  20. Conway, G. R. (1987). The properties of agroecosystems. Agricultural Systems, 24, 95–117.CrossRefGoogle Scholar
  21. Courville, S. (2006). Organic standards and certification. (In P. Kristiansen, A. Taji, J. & J. Reganold (Eds), Organic agriculture. A global perspective. (pp. 201–220) CSIRO Publishing, Collingwood, Australia)Google Scholar
  22. Crutzen, P. J., Mosier, A. R., Smith, K. A., & Winiwarter, W. (2007). N$2$O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics., 7, 11191–11205. Retrieved September 15 2007 from http://www.atmos-chem-phys-discuss.net/7/11191/2007/acpd-7-11191-2007.pdfGoogle Scholar
  23. Delate, K, Duffy, M., Chase, C., Holste, A., Friedrich, H., & Wantate, N. (2003). An economic comparison of organic and conventional grain crops in a Long-Term Agroecological Research (LTAR) Site in Iowa. Journal of Alternative Agriculture, 18(2), 59–69.CrossRefGoogle Scholar
  24. Dalgaard, T., Hutchings, N.J., & Porter, J.R. (2003). Agroecology, scaling and interdisciplinarity. Agriculture Ecosystems and Environment, 100, 39–51.CrossRefGoogle Scholar
  25. Dalgaard, T., Halberg, N., & Porter, J. R. (2001). A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agriculture, Ecosystems and Environment, 87, 51–65.CrossRefGoogle Scholar
  26. DEFRA (Department for Environment Food and Rural Affairs – UK) (2005). The validity of food miles as an indicator of sustainable development. Report number ED50254. Retrieved September 16 2007 from http://statistics.defra.gov.uk/esg/reports/foodmiles/default.asp}.Google Scholar
  27. De Oliveira, M. E. D., Vaughan, B. E., & Rykiel, Jr. E. J. (2005). Ethanol as fuel: Energy, carbon dioxide balances, and ecological footprint. BioScience, 55(7), 593–602.CrossRefGoogle Scholar
  28. Diamond, J. (2005). Collapse: How societies choose to fail or succeed. (Penguin, London)Google Scholar
  29. Drinkwater, L. E., Wagoner, P., & Sarrantonio, M. (1998). Legume-based cropping systems have reduced carbon and nitrogen losses. Nature, 396, 262–265.CrossRefGoogle Scholar
  30. Dritschillo, W., & Wanner, D. (1980). Ground beetle abundance in organic and conventional corn fields. Environmental Entomology, 9, 629–631.Google Scholar
  31. Dunlap, R. E., Beus, C. E., Howell, R., &Waud, J. (1992). What is sustainable agriculture? An empirical examination of faculty and farmer definitions. Journal of Sustainable Agriculture, 3(1), 5–39.CrossRefGoogle Scholar
  32. EC (European Commission) (2007). Council Regulation (EC) No 834/2007, of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092. Retrieved July 30 2007 from http://eur-lex.europa.eu/LexUriServ/ site/en/oj/2007/l_189/l_18920070720en00010023.pdfGoogle Scholar
  33. EC (European Commission) (2005). Annex to the communication from the Commission biomass action plan impact assessment. Retrieved 20 July 2007 from http://ec.europa.eu/energy/ res/biomass_action_plan/doc/sec_2005_1573_impact_assessment_en.pdfGoogle Scholar
  34. Edens, T. (1984). Sustainable agriculture and integrated farming systems. (Michigan State Univ. Pr.)Google Scholar
  35. EEA (European Environmental Agency) (2006). How much bioenergy can Europe produce without harming the environment? Report No 7/2006 Roland Siemons, Martijn Vis, Douwe van den Berg (BTG) Ian Mc Chesney MBA, Mark Whiteley MSc (ESD). Retrieved June 15 2007 from 1http://reports.eea.europa.eu/eea_report_2006_7/en/eea_report_7_2006.pdfGoogle Scholar
  36. EEC (European Economic Community) (1991). Council Regulation (EEC) No 2092/91 of 24 June 1991 on organic production of agricultural products and indications referring thereto on agricultural products and foodstuffs (OJ L 198, 22.7.1991, p. 1)Google Scholar
  37. Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land Clearing and the Biofuel Carbon Debt. Science, www.sciencexpress.org/7 February 2008/Page 1/10.1126/science. 1152747Google Scholar
  38. FAO (2004). The scope of organic agriculture, sustainable forest management and ecoforestry in protected area management. (FAO, Rome) Retrieved August 15 2007 from http://www.fao.org/docrep/007/y5558e/y5558e00.htm#}tocGoogle Scholar
  39. FAO (2003).World agriculture: towards 2015/2030 – An FAO perspective. (FAO, Rome) Retrieved 15 August 15 2007 from http://www.fao.org/DOCREP/005/Y4252E/Y4252E00.HTMGoogle Scholar
  40. FAO (2002). Organic agriculture, environment and food security. Environment and Natural Resources Service Sustainable Development Department. Retrieved July 20 2007 from http://www.fao.org/DOCREP/005/Y4137E/y4137e00.htm{#}TopOfPageGoogle Scholar
  41. Feenstra, G., Ingels, C., & Campbell, D. (1997). What is sustainable agriculture? Retrieved July 30, 2007 from University of California Sustainable Agriculture Research and Education Programme Web Site: http://www.sarep.ucdavis.edu/concept.htmGoogle Scholar
  42. Foereid, B., & Høgh-Jensen, H. (2004). Carbon sequestration potential of organic agriculture in northern Europe – a modelling approach. Nutrient Cycling in Agroecosystems, 68, 13–24.CrossRefGoogle Scholar
  43. Foster, C., Green, K., Bleda, M., Evans, B., Flynn, A., & Myland, J. (2006). Environmental impact of food production and consumption. A report to the Department of Environment, Food and Rural Affair (DEFRA). Manchester Business School, DEFRA, London. Retrieved July 15 2007 from http://www.defra.gov.uk/science/project_data/Document Library/EV02007/EV02007_4601_FRP.pdfGoogle Scholar
  44. Genghini, M., Gellini, S., & Gustin, M. (2006). Organic and integrated agriculture: the effects on bird communities in orchard farms in northern Italy. Biodiversity and Conservation, 15, 3077–3094.CrossRefGoogle Scholar
  45. Giampietro, M. (2004). Multi-scale integrated analysis of agroecosystems. (CRC Press, Boca Raton, London)Google Scholar
  46. Giampietro, M., Bukkens S. G. F., & Pimentel, D. (1994). Models of energy analysis to assess the performance of food systems. Agricultural Systems, 45(1), 19–41.CrossRefGoogle Scholar
  47. Gliessmann, S. R. (2000). Agroecology: Ecological processes in sustainable agriculture. (Lewis Publisher, Boca Raton, New York)Google Scholar
  48. Gliessmann, S. R. (Ed.) (1990). Agroecology: Researching the ecological basis for sustainable agriculture. (Springer-Verlag, New York)Google Scholar
  49. Goklany, I. M. (2002). The ins and outs of organic farming. Science, 298, 1889.Google Scholar
  50. Goldemberg, J. (2007). Ethanol for a sustainable energy future. Science, 315, 808–810.Google Scholar
  51. Gold, M. V., & Gates, J. P. (2007). Tracing the evolution of organic/sustainable agriculture: A selected and annotated bibliography, Beltsville, Md.: United States Dept. of Agriculture, National Agricultural Library, [1988] ; updated and expanded, May 2007 Retrieved July 25 2007 from http://www.nal.usda.gov/afsic/pubs/tracing/tracing.shtmlGoogle Scholar
  52. Gomiero, T., Giampietro, M., & Mayumi, K. (2006). Facing complexity on agro-ecosystems: a new approach to farming system analysis. International Journal of Agricultural Resources, Governance and Ecology, 5(2/3), 116–144.Google Scholar
  53. Gomiero, T., Giampietro, M., Bukkens, S. M., & Paoletti, G. M. (1997). Biodiversity use and technical performance of freshwater fish culture in different socio-economic context: China and Italy. Agriculture, Ecosystems and Environment, 62 (2,3), 169–185.CrossRefGoogle Scholar
  54. Grandy, A. S., & Robertson, G. P. (2007). Land-use intensity effects on soil organic carbon accumulation rates and mechanisms. Ecosystems, 10, 58–73.CrossRefGoogle Scholar
  55. Guthman, J. (2004). Agrarian dreams: The paradox of organic farming in California. (University of California Press, Los Angeles)Google Scholar
  56. Haas, G., Wetterich, F., & Kopke, U. (2001). Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agriculture, Ecosystems and Environment, 83, 43–53.CrossRefGoogle Scholar
  57. Haden, A. C. (2003). Emergy evaluations of Denmark and Danish agriculture assessing the limits of agricultural systems to power society. Ekologiskt Lantbrunknr, 37 March 2003. Retrieved July 24 2007 from http://www.cul.slu.se/information/publik/ekolantbruk37.pdfGoogle Scholar
  58. Hansen, B., Fjelsted, H., Kristensen, E. S. (2001). Approaches to assess the environmental impact of organic farming with particular regard to Denmark. Agriculture, Ecosystems and Environment, 83, 11–26.CrossRefGoogle Scholar
  59. Hansson, P-A., Baky, A., Ahlgren, S., Bernesson, S., Nordberg, A., Nore’n, O., & Pettersson, O. (2007). Self-sufficiency of motor fuels on organic farms – Evaluation of systems based on fuels produced in industrial-scale plants. Agricultural Systems, 94, 704–714.CrossRefGoogle Scholar
  60. Heaton, S. (2001). Organic farming, food quality and human health: A review of the evidence, (Soil Association, Bristol, UK) Retrievd the 12 June 2007 from http://www.soilassociation.org/Web/ SA/saweb.nsf/9f788a2d1160a9e580256a71002a3d2b/de88ae6e5aa94aed80256abd00378489/ $}FILE/foodqualityreport.pdfGoogle Scholar
  61. Heemsbergen, D. A., Berg, M. P., Loreau, M., van Hal, J. R., Faber, J. H., & Verhoef, H. A. 2004. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science, 306, 1019–1020.CrossRefGoogle Scholar
  62. Heckman, J. (2006). A history of organic farming: Transitions from Sir Albert Howard’s war in the soil to the USDA National Organic Program. Wise Traditions in Food, Farming, and the Healing Arts,winter 2006. Retrieved July 30 2007 from http://www.westonaprice.org/ farming/history-organic-farming.htmlGoogle Scholar
  63. Hendrix, J. (2007). Editorial response by Jim Hendrix. Renewable Agriculture and Food Systems, 22(2), 84–85.Google Scholar
  64. Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS, 103, 11206–11210.CrossRefGoogle Scholar
  65. Hillel, D. (1991). Out of the earth: Civilization and the life of the soil. (University of California Press).Google Scholar
  66. Himmel, M. E., Ding, S-Y, Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–807.CrossRefGoogle Scholar
  67. Hoeppner, J., Hentz, M., McConkey, B., Zentner, R., & Nagy, C. (2006). Energy use and efficiency in two Canadian organic and conventional crop production systems. Renewable Agriculture and Food Systems, 21(1), 60–67.CrossRefGoogle Scholar
  68. Hole, D. G., Perkings, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V., & Evans, A.D. (2005). Does organic farming benefits biodiversity. Biological Conservation, 122, 113–130.CrossRefGoogle Scholar
  69. Holland, J. M. (2004). The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agriculture, Ecosystems and Environment, 103, 1–25.CrossRefGoogle Scholar
  70. Howard, A. (1943). An agricultural testament. (Oxford University Press, New York)Google Scholar
  71. Hudson Institute (2007). “Organic Abundance” Report: Fatally Flawed. Retrieved September 12 2007 from http://www.cgfi.org/cgficommentary/organic-abundance-report-fatally-flawedGoogle Scholar
  72. IEA (International Energy Agency) (2002). Sustainable production of woody biomass for energy. International Energy Agency (IEA), Retrieved July 30 2007 from http://www.ieabioenergy. com/library/157_PositionPaper-SustainableProductionofWoodyBiomassforEnergy.pdfGoogle Scholar
  73. Ikerd, J. E. (1993). The need for a system approach to sustainable agriculture. Agriculture, Ecosystems and Environment, 46, 147–160.CrossRefGoogle Scholar
  74. IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA) Retrieved June 15 2007 from http://www.ipcc.ch/Google Scholar
  75. Janzen, H. H. (2004). Carbon cycling in earth systems—a soil science perspective. Agriculture, Ecosystems and Environment, 104, 399–417.CrossRefGoogle Scholar
  76. Jørgensen, U., Dalgaar, T., & Kristensen, E. S. (2005). Biomass energy in organic farming – The potential role of short rotation Coppice. Biomass and Bioenergy, 28(2), 237–248.CrossRefGoogle Scholar
  77. Kasperczyk, N., & Knickel, K. (2006). Environmental impact of organic agriculture. (In P., Kristiansen, A., Taji, J., Reganold, J., (Eds), Organic agriculture. A global perspective. (pp. 259–294) CSIRO Publishing, Collingwood, Australia)Google Scholar
  78. Keeney, D. (2007). Sustainable biofuels: A new challenge for the Leopold Center. Leopold Center for Sustainable Agriculture 2007 Leopld Letters, Spring. Retrieved July 30 2007 from http://www.leopold.iastate.edu/pubs/nwl/2007/2007-1-leoletter/anniversary.htmGoogle Scholar
  79. Kirschenmann, F. (2004). A brief history of sustainable agriculture. The Networker, vol. 9, no. 2, March 2004. Retrieved July 30 2007. http://www.sehn.org/Volume_9-2.htmlGoogle Scholar
  80. Krebs, J. R., Wilson, J. D., Bradbury, R. B., & Siriwardena, G. M. (1999). The second Silent Spring? Nature, 400, 611–612.CrossRefGoogle Scholar
  81. Kristiansen, P. (2006). Overview of organic agriculture. (In P. Kristiansen, A. Taji, & J. Reganold (Eds.), Organic agriculture. A global perspective. (pp. 1–24}) CSIRO Publishing, Collingwood, Australia)Google Scholar
  82. Kristiansen, P., Taji, A., & Reganold, J. (Eds) (2006). Organic agriculture. A global perspective. (CSIRO Publishing, Collingwood, Australia)Google Scholar
  83. Koepf, H. H. (2006). The biodynamic farm. SteinerBooks, Dulles, VA.Google Scholar
  84. Koepf, H. H., Schaumann, W., & Haccius, M. (1996). Biologisch- Dynamische Landwirtschaft Eine Einführung. Ulmer (Eugen, Germany) in German. (trad. Biodynamic agriculture)Google Scholar
  85. Kotschi., J., & Müller-Sämann, K. (2004). The Role of Organic Agriculture in Mitigating Climate Change. (IFOAM – Bonn) Retrievend June 15 2007 from http://www.ifoam.org/ press/positions/pdfs/Role_of_OA_migitating_climate_change.pdfGoogle Scholar
  86. Koutinas, A. A., Wang, R.-H., & Webb, C. (2007). The biochemurgist: Bioconversion of agricultural raw materials for chemical mproduction. Biofuels, Bioprod. Bioref., 1, 24–38.CrossRefGoogle Scholar
  87. Kropff, M. J., Bouma, J., & Jones, J. W. (2001). Systems approaches for the design of sustainable agro-ecosystems. Agricultural Systems, 70(i}2–3): 369–393CrossRefGoogle Scholar
  88. Lange, J.-P. (2007). Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels, Bioprod. Bioref., 1, 39–48.CrossRefGoogle Scholar
  89. Lal, R. (2004). Soil carbon sequestration impact on global climate and food security. Science, 304, 1623–1627.CrossRefGoogle Scholar
  90. Lampkin, N. (2002). Organic Farming (revised edition). (Old Pond Publishing, Suffolk, UK)Google Scholar
  91. Lynd, L. R., Cushman, J. H., Nichols, R. J., & Wyman, C. E. (1991). Fuel ethanol from cellulosic biomass. Science, 251, 1318–1323.CrossRefGoogle Scholar
  92. Lockeretz, W. (1983). Energy price increases: How strong an incentive for decreasing energy use in agriculture? Biological Agriculture and Horticulture, 1, 255–267.Google Scholar
  93. Lockeretz, W., Shearer, G., & Kohl, D. H. (1981). Organic farming in the Corn Belt. Science, 211, 540–546.CrossRefGoogle Scholar
  94. Lowenberg-DeBoer, J. (1996). Precision farming and the new information technology: implications for farm management, policy, and research: Discussion. American Journal of Agricultural Economics, 78(5), 1281–1284.CrossRefGoogle Scholar
  95. Lotter, D. W. (2003). Organic agriculture. Journal of Sustainable Agriculture, 21(4), 59–128.CrossRefGoogle Scholar
  96. Lotter, D. W., Seidel, R., & Liebhart, W. (2003). The performance of organic and conventional cropping systems in an extreme climate year. American Journal of Alternative Agriculture, 18(3), 146–154.CrossRefGoogle Scholar
  97. Lu, C., Toepel, K., Irish, R., Fenske, R.A., Barr, D.B., & Bravo, R. (2006). Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environmental Health Perspectives, 114(2), 260–263.CrossRefGoogle Scholar
  98. Mäder, P., Flieβbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296, 1694–1697.CrossRefGoogle Scholar
  99. Mäder, P., Flieβbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). The ins and outs of organic farming. Science, 298, 1889–1890.Google Scholar
  100. Mason, J. (2003). Sustainable Agriculture. (CSIRO Publishing; 2nd edition)Google Scholar
  101. Matson, P. A., Parton, W. J., Power, A. G., Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509.CrossRefGoogle Scholar
  102. Maud, S. (2007). Sustainability of poultry production. Agriculture, Ecosystems and Environment, 120, 470–471}.CrossRefGoogle Scholar
  103. McDonald, A. J., Hobbs, P. R., & Riha, S. J. (2005). Does the system of rice intensification outperform conventional best management? A synopsis of the empirical record. Field Crops Research, 96,(1), 31–36.CrossRefGoogle Scholar
  104. Millennium Ecosystem Assessment (2005). Ecosystems and human well-being: Synthesis. (Island Press, Washington, DC)Google Scholar
  105. Mollison, B., & Holmgren, D. (1978). Permaculture one: A perennial agriculture for human settlements. (Trasworld Publishers, London, UK)Google Scholar
  106. National Organic Standards Board (2007). Organic definition passed by the NOSB at its April 1995 meeting in Orlando, FL. Retrieved July 30 2007 from the Organic Trade Association http://www.ota.com/definition/nosb.htmlGoogle Scholar
  107. National Research Council (1998). Precision agriculture in the 21st century: Geospatial and informationtechnologies in crop management. (National Academies Press)Google Scholar
  108. Netuzhilin, I. Cerda, H., López-Hernández, D., Torres, F., Chacon, P., & Paoletti. M. G. (1999). Biodiversity tools to evaluate sustainability in savanna-forest ecotone in the Amazonas (Venezuela). (In: M.V., Reddy (ed), Management of tropical agroecosystems and the beneficial soil biota. (pp. 291–352) Science Publishers Inc., Enfield, New Hampshire)Google Scholar
  109. NRC (National Research Council) (1986). Alternative agriculture. (National Academy Press, Washington, D.C.)Google Scholar
  110. Odum, H. T. (1996). Environmental accounting: Emergy and environmental decision making. (Wiley, New York)Google Scholar
  111. Odum, H. T. (1988). Self-Organization, tranformity, and information. Science, 242, 1132–1139.CrossRefGoogle Scholar
  112. Paoletti, M. G. (2001). Biodiversity in agroecosystems and bioindicators of environmental health. (In M. Shiyomi & H. Koizumi) (Eds.), Structure and function in agroecosystems design and management. (pp. 11–44}) (CRC press, Boca Raton, FL, USA)Google Scholar
  113. Paoletti, M. G., & Bressan, M. (1996). Soil invertebrates as bioindicators of human disturbance. Critical reviews in plant sciences, 15(1), 21–62.CrossRefGoogle Scholar
  114. Paoletti, M. G., & Pimentel, D. (2000). Environmental risks of pesticides versus genetic engineering for agricultural pest control. J. Agricultural and Environmental Ethics, 12(3), 279–303.CrossRefGoogle Scholar
  115. Paoletti, G. M., & Pimentel, D. (1992). Biotic diversity in agroecosystems. (Elsevier, Amsterdam)Google Scholar
  116. Paoletti, M. G., Stinner, B. R., & Lorenzoni, G. G. (Eds.), (1989). Agriculture, ecology and environment. (Elsevier, Amsterdam)Google Scholar
  117. Paoletti M. G., Tsitsilas A., Thomson L. J., Taiti S., & Umina, P. A. (2008). The flood bug, Australiodillo bifrons (Isopoda: Armadillidae): A potential pest of cereals in Australia? Applied Soil Ecology, 39(1), 76–83.CrossRefGoogle Scholar
  118. Paoletti, M. G., Favretto, M. R., Marchiorato, A., Bressan, M., & Babetto, M. (1993). Biodiversitá in pescheti forlivesi. In: Paoletti M.G. et al. Biodiversitá negli Agroecosistemi. (Osservatorio Agroambientale, Centrale Ortofrutticola, Forlì), pp. 20–56. (in Italian)Google Scholar
  119. Paoletti M.G., Giampietro, M., Han, C-R., Pastore, G., Bukkens, S. G.F., & Baudry, J. (Eds.) (1999). Agricultural intensification and sustainability in PR China. Critical Reviews of Plant Sciences, 18(3), 257–487.CrossRefGoogle Scholar
  120. Perrings, C., Jackson, L., Bawa, K., Brussaard, L., Brush, S., Gavin, T., Papa, R., Pascual, U., & de Ruiter, P. (2006). Biodiversity in agricultural landscapes: saving natural capital without losing interest. Conservation Biological, 20, 263–264.CrossRefGoogle Scholar
  121. Pete, S., Olof, A., Thord, K., Paula, P., Kristiina, R., Mark, R., & Bas, W. (2005). Carbon sequestration potential in European croplands has been overestimated. Global Change Biology, 11(12), 2153–2163.CrossRefGoogle Scholar
  122. Pimentel, D. (2007). Soil erosion. (In D. Pimentel, & M. Pimentel (Eds.) Food, energy, and society: Third edition., (201–214) CRC Press)Google Scholar
  123. Pimentel, D., & Pimentel., M. (2007a). Food, energy, and society: Third edition. (CRC Press, Boca Raton, FL)Google Scholar
  124. Pimentel, D., & Pimentel., M. (2007b). Transport of agriculture supplies and food. (In D. Pimentel, & M. Pimentel (Eds.) Food, energy, and society: Third edition., (257–259) CRC Press)Google Scholar
  125. Pimentel, D. (2006a). Impacts of organic farming on the efficiency of energy use in agriculture an organic center state of science review. (The Organic Center), Retrieved September 15 2007 from http://www.organic-center.org/reportfiles/ENERGY_SSR.pdfGoogle Scholar
  126. Pimentel., D. (2006b). Soil erosion: A food and environmental threat. Environment, Development and Sustainability, 8(1), 119–137.Google Scholar
  127. Pimentel, D. (2003). Ethanol fuels: Energy balance, economics, and environmental impacts are negative. Natural Resources Research, 12(2), 127–134.CrossRefGoogle Scholar
  128. Pimentel, D. (1993). Economic and energetics of organic and convention farming. Journal of Agricultural and Environmental Ethics, 6, 53–60.CrossRefGoogle Scholar
  129. Pimentel, D. (1991). Ethanol fuels: Energy security, economics, and the environment. Journal of Agricultural and Environmental Ethics, 4(1), 1–13.CrossRefGoogle Scholar
  130. Pimentel, D. (1989). Energy flow in food system. (In D. Pimentel, & C. W. Hall (Eds.). Food and natural resources. (pp. 1–24) Academic press, New York)Google Scholar
  131. Pimentel, D., & Patzek, T. (2005). Ethanol production using corn, switchgrass, and wood: biodiesel production using soybean and sunflower. Natural Resources Research, 14(1), 65–76.CrossRefGoogle Scholar
  132. Pimentel, D., & Kounang, N. (1998). Ecology of soil erosion in ecosystems. Ecosystems, 1, 416–426.CrossRefGoogle Scholar
  133. Pimentel, D., Berardi, G., & Fast, S. (1983). Energy efficiency of farming systems: organic and conventional agriculture. Agriculture Ecosystems and Environment, 9, 359–337.CrossRefGoogle Scholar
  134. Pimentel, D., Hepperly, P., Hanson, J., Douds, D., & Seidel, R. (2005). Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience, 55(7), 573–582.CrossRefGoogle Scholar
  135. Pimentel, D., Hurd, E., Bellotti, A. C., Forster, M. J., Oka, I. N., Sholes, O.D., & Whitman, R. J. (1973). Food production and the energy crisis. Science, 182, 443–449.Google Scholar
  136. Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M, Crist, S., Sphpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267, 1117–23.CrossRefGoogle Scholar
  137. Pimentel, D., Moran, M. A., Fast, S., Weber, G., Bukantis, R., Balliett, L., Boveng, P., Cleveland, C., Hindman, S., & Young, M. (1981). Biomass energy from crop and forest residues. Science, 212, 1110–1115.CrossRefGoogle Scholar
  138. Poincelot, R. P. (1986). Towards a more sustainable agriculture. (AVI Publishing co. Co.)Google Scholar
  139. Pointing, C. (2007). A new green history of the world. (Vintage books, London)Google Scholar
  140. Pretty, J. (Eds.) (2005). The earthscan reader in sustainable agriculture. (Earthscan Publisher, London)Google Scholar
  141. Pretty, J., & Hine, R. (2001). Reducing food poverty with sustainable agriculture: a summary of new evidence. Final report from the ‘SAFE World’ Research Project, University of Essex. Retrieved June 20 2007 from http://www.essex.ac.uk/ces/esu/occasionalpapers/ SAFE%}20FINAL{%}20-%}20Pages1-22.pdfGoogle Scholar
  142. Pretty, J. N., Morison, J. I. L., & Hine, R. E. (2003). Reducing food poverty by increasing agricultural sustainability in developing countries. Agriculture, Ecosystems and Environment, 95, 217–234.CrossRefGoogle Scholar
  143. Pretty, J. N., Ball, A. S., Xiaoyun, L., & Ravindranath, N. H. (2002). The role of sustainable agriculture and renewable-resource management in reducing greenhouse-gas emissions and increasing sinks in China and India. Philosophical transactions of the Royal Society of London. Series B, Biological sciences A, 360, 1741–1761.Google Scholar
  144. Pretty, J. N., Ball, A. S., Lang, T., & Morison, J. I. L. (2005). Farm costs and food miles: An assessment of the full cost of the UK weekly food basket. Food Policy, 30, 1–19.CrossRefGoogle Scholar
  145. Rasmussen, P. E., Goulding, K. W. T., Brown, J. R., Grace, P. R., Janzen, H. H., & Körschens, M. (1998). Long-Term Agroecosystem Experiments: Assessing agricultural sustainability and global change. Science, 282, 893–896.CrossRefGoogle Scholar
  146. Reganold, J. P. (1995). Soil quality and profitability of biodynamic and conventional farming systems: a review. American Journal of Alternative Agriculture, 10(1), 36–46.CrossRefGoogle Scholar
  147. Reganold, J., Elliott, L., & Unger, Y. (1987). Long-term effects of organic and conventional farming on soil erosion. Nature, 330, 370–372.CrossRefGoogle Scholar
  148. Reganold, J., Glover, J., Andrews, P., & Hinman, H. (2001). Sustainability of three apple production systems. Nature, 410, 926–929.CrossRefGoogle Scholar
  149. Refsgaard, K., Halberg, N., & Kristensen, E. S. (1998). Energy utilization in crop and dairy production in organic and conventional livestock production systems. Agricultural Systems, 57(4), 599–630.CrossRefGoogle Scholar
  150. Rigby, D., & Cáceras, D. (2001). Organic farming and the sustainability of agricultural systems. Agricultural Systems, 68, 21–40.CrossRefGoogle Scholar
  151. Robertson, G. P., Paul, E. A., & Harwood, R. R. (2000). Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science, 289, 1922–1925.CrossRefGoogle Scholar
  152. Rodale, J. I. (1945). Paydirt: Farming & gardening with composts. (Devin-Adair Co., New York)Google Scholar
  153. Roschewitz, I., Gabriel, D., Tscharntke, T., & Thies, C. (2005). The effects of landscape complexity on arable weed species diversity in organic and conventional farming. Journal of Applied Ecology, 42, 873–882.CrossRefGoogle Scholar
  154. Roviglioni, R. (2005). Bio consuma meno energia. BioAgricoltura, marzo/aprile: 5-7. (in Italian)Google Scholar
  155. Searchinger, T., Heimlich, R., Houghton, A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., & Yu, T-H., (2008). Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land Use Change www.sciencexpress.org/7 February 2008/Page1/ 10.1126/science.1151861Google Scholar
  156. Service, R. F. (2007). Biofuel researchers prepare to reap a new harvest. Science, 315, 1488–1491.CrossRefGoogle Scholar
  157. Siegrist, S., Schaub, D., Pfiffner, L., & Mäder, P. (1998). Does organic agriculture reduce soil erodibility? The results of a long-term field study on loess in Switzerland. Agriculture, Ecosystem and Environment, 69, 253–264.CrossRefGoogle Scholar
  158. Schlesinger, W. H. (1999). Carbon and agriculture: Carbon sequestration in soils. Science, 284, 2095.CrossRefGoogle Scholar
  159. Schlich, E., & Fleissner, U. (2005). The ecology of scale: Assessment of regional energy turnover and comparison with global food. The International Journal of Life Cycle Assessment, 10(3), 213–223.Google Scholar
  160. Smil, V. (2001). Feeding the world: A challenge for the twenty-first century. (MIT Press, Cambridge, MC)Google Scholar
  161. Smil, V. (1999). Crop residues: Agriculture’s largest harvest. BioScience, 49(4): 299–308.CrossRefGoogle Scholar
  162. Smith, P., Andrén, O., Karlsson,T., Perälä, P., Regina, K., Rounsevell, M., & Van Wesemael, B. (2005). Carbon sequestration potential in European croplands has been overestimated. Global Change Biology, 11(12), 2153–2163.CrossRefGoogle Scholar
  163. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H. H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, R. J., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., & Smith, J. U. (2008): Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London, B, 363, 789–813.CrossRefGoogle Scholar
  164. Smolik, J. D., Dobbs, T. L., & Rickerl, D. H. (1995). The relative sustainability of alternative, conventional and reduced-till farming system. American Journal of Alternative Agriculture, 10(1), 25, 25–35.Google Scholar
  165. Soil Association (2004). Towards a UK strategy for biofuels – Soil Association response to Department of Transport consultation, July 2004. Retrieved July 30 2007 from http://www.soilassociation.org/web/sa/saweb.nsf/b0062cf005bc02c180256a6b003d987f/ 5401483e80739c88802570cb005919a6?OpenDocumentGoogle Scholar
  166. Solomon, B. D., Barnes, J. R., & Halvorsen, K. E. (2007). Grain and cellulosic ethanol: History, economics, and energy policy. Biomass and Bioenergy, 31, 416–425.CrossRefGoogle Scholar
  167. Srinivasan, A. (Ed.) (2006). Handbook of precision agriculture: Principles and applications. (Food Products Press)Google Scholar
  168. Stanhill, G. (1990). The comparative productivity of organic agriculture. Agriculture Ecosystems and Environment, 30(1–2), 1–26.CrossRefGoogle Scholar
  169. Steinhart, J. S., & Steinhart, C. E. (1974). Energy Use in the U.S. Food System. Science, 184, 307–316.CrossRefGoogle Scholar
  170. Stephanopoulos, G. (2007). Challenges in engineering microbes forn biofuels production. Science, 315, 801–804.CrossRefGoogle Scholar
  171. Stevens, T. O. (1997). Lithoautotrophy in the subsurface. FEMS Microbiology Reviews, 20, 327–337.CrossRefGoogle Scholar
  172. Stevens, T. O., & Mckinley, J. P. (1995). Lithoautotrophic microbia, ecosystems in deep basalt aquifers.Science, 270, 450–454}.Google Scholar
  173. Stockdale, E. A., Lampkin, N. H., Hovi, M., Keatinge, R., Lennartsson, E. K. M., Macdonald, D. W., Padel, S., Tattersall, F. H., Wolfe, M. S., & Watson, C. A. (2001). Agronomic and environmental implications for organic farming systems. Advances in Agronomy, 70, 261–327}.Google Scholar
  174. Stölze, M.,. Piorr, A. Häring, & Dabbert, S. (2000). The environmental impact of organic farming in Europe. In: Organic Farming in Europe: Economics and Policy. University of Hohenheim: Hohenheim, Germany. Retrieved July 30 2007 from http://orgprints.org/2366/02/Volume6.pdfGoogle Scholar
  175. Thies, C., & Tscharntke, T. (1999). Landscape structure and biological control in agroecosystems. Science, 285, {893–895}.Google Scholar
  176. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.Google Scholar
  177. Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W.H., Simberloff, D., & Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281–284. %%\AQAU: Google Scholar
  178. Trewavas, A. (2001). Urban myths of organic farming. Nature, 410, 409–410.Google Scholar
  179. Ulgiati, S. & Brown, M. T. (1998). Monitoring patterns of sustainability in natural and man-made ecosystems. Ecological Modelling, 108, 23–36.Google Scholar
  180. Ulgiati, S., Odum, H.T., & Bastioni, S. (1994). Emergy use, environmental loading and sustainability: an emergy analysis of Italy. Ecological Modelling, 73, 215–268.Google Scholar
  181. USDAa (2007). Background information. Retrieved July 30 2007 from http://www.ams.usda.gov/ nop/FactSheets/Backgrounder.htmlGoogle Scholar
  182. USDAb (2007). Organic production/Organic food: Information access tools. Retrieved July 30 2007 from http://www.nal.usda.gov/afsic/pubs/ofp/ofp.shtml.Google Scholar
  183. USDAc (2007). Organic production. Retrieved July 30 2007 from http://www.ers.usda.gov/ data/organic/Google Scholar
  184. USDA (1990). Food, Agriculture, Conservation, and Trade Act of 1990 (FACTA), Public Law 101-624, Title XVI, Subtitle A, Section 1603, Government Printing Office, Washington, DC, 1990 NAL Call # KF1692.A31 1990. %%\AQAU: Google Scholar
  185. Vasilikiotis, C. (2000). Can organic farming “feed the world”? Retrieved July 12 2007 from http://www.cnr.berkeley.edu/$∼ $christos/articles/CV-Organic%20Farming.pdfGoogle Scholar
  186. Vogl, C. R., Kilcher, L., & Schmidt, H. (2005). Are standards and regulations of organic farming moving a way from small farmers’ knowledge? Journal of Sustainable Agriculture, 26(1), 5–25.Google Scholar
  187. Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–1633.Google Scholar
  188. Wes, J. (1980). New roots for agriculture. (University of Nebraska Press, Lincoln NE)Google Scholar
  189. Willer, H., & Yussefi, M. (Eds.) (2006). The World of organic agriculture: Statistics and emerging trends. International Federation of Organic Agriculture Movements (IFOAM), Bonn Germany & Research Institute of Organic Agriculture FiBL, Frick, SwitzerlandSOEL-Survey 2006 http://www.soel.de/inhalte/publikationen/s/s_74_08.pdfGoogle Scholar
  190. Winter, C. K., & Davis, S. F. (2006). Organic Foods. Journal of Food Science, 71(9), 117–124.Google Scholar
  191. Wolf, S. A., & Allen, T. F. H. (1995). Recasting alternative agriculture as a management model: The value of adept scaling. Ecological Economics, 12, 5–12.Google Scholar
  192. Worster, D. (2004). Dust Bowl: The Southern Plains in the 1930s. (Oxford Univ. Press, New York)Google Scholar
  193. Ziesemer, J. (2007).Energy use in organic food systems. (FAO, Rome) Retrieved October 4 2007 from http://www.fao.org/docs/eims/upload/233069/energy-use-oa.pdfGoogle Scholar
  194. Zimmer, G. F. (2000). The biological farmer: A complete guide to the sustainable & profitable biological system of farming. (Acres USA)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Tiziano Gomiero
    • 1
  • Maurizio G. Paoletti
    • 1
  1. 1.Department of BiologyPadua University Italy Laboratory of Agroecology and EthnobiologyItaly

Personalised recommendations