Biofuels, Solar and Wind as Renewable Energy Systems

pp 425-464

Organic and Sustainable Agriculture and Energy Conservation

  • Tiziano GomieroAffiliated withDepartment of Biology, Padua University Italy Laboratory of Agroecology and Ethnobiology
  • , Maurizio G. PaolettiAffiliated withDepartment of Biology, Padua University Italy Laboratory of Agroecology and Ethnobiology

* Final gross prices may vary according to local VAT.

Get Access


In the last decades biofuels have been regarded as an important source of renewable energy and at the same time as an option to curb greenhouse gas emissions. This is based on a number of assumptions that, on a close look, may be misleading, such as the supposed great energy efficiency of biofuels production. Large scale biofuels production may, on the contrary, have dramatic effects on agriculture sustainability and food security. In this chapter we explore the energy efficiency of organic farming in comparison to conventional agriculture, as well as the possible benefits of organic management in term of Green House Gasses mitigation.

Organic agriculture (along with other low inputs agriculture practices) results in less energy demand compared to intensive agriculture and could represent a mean to improve energy savings and CO2 abatement if adopted on a large scale. At the same time it can provide a number of important environmental and social services such as: preserving and improving soil quality, increasing carbon sink, minimizing water use, preserving biodiversity, halting the use of harmful chemicals so guaranteeing healthy food to consumers. We claim that more work should be done in term of research and investments to explore the potential of organic farming for reducing environmental impact of agricultural practices. However, the implications for the socio-economic system of a reduced productivity should be considered and suitable agricultural policies analysed.

The chapter is organised as follows: Section (17.1) provides the reader with a definition of organic agriculture (and sustainable agriculture) and a brief history of the organic movement in order to help the reader to better understand what is presented later on; Section (17.2) reviews a number of studies on energy efficiency in organic and conventional agriculture; Section (17.3) compares CO2 emissions from organic and conventional managed farming systems; Section (17.4) analyses the possible use of agricultural “waste” to produce cellulosic ethanol; Section (17.5) provides some comments concerning the possible production of biofuels from organically grown crops; Section (17.6) concludes the chapter presenting a summary of the review.


organic agriculture conventional agriculture energy use GHGs emissions soil ecology biodiversity