Skip to main content

Nonequilibrium Phase Transition in Scattered Cell Communities Coupled by Auto/Paracrine-Like Signalling

  • Chapter
  • 845 Accesses

Abstract

Auto/paracrine cell-to-cell communications via diffusive messengers can be coupled to a positive feedback loop in which cell stimulation by a messenger results in the production of new messengers. This yields a potential mechanism for relay transmission of the emitted message. This paper investigates the influence of noise on this mutual coupling of the cells with their environment, using numerical simulations of a stochastic minimal model. The results demonstrate that the deterministic (mean-field) approximation of this stochastic process fails short of predicting its behaviour because of the presence of strong noise-induced fluctuations. Instead, the behaviour of the model can be explained by the occurrence of a nonequilibrium phase transition, which is found to be in the universality class of directed percolation. This provides a theoretical framework to understand signal transmission in these stochastic systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam M., & Lairez, D., 1996, Sol-gel transition. In Physical Properties of Polymeric Gels (J.P. Cohen Addad, ed.), John Wiley &. Sons, UK, pp.87–142.

    Google Scholar 

  • Albano, E.V., 1994, Critical behaviour of a forest fire model with immune trees, J. Phys. A 277:L881–L886.

    Article  Google Scholar 

  • Bär, M., Falcke, M., Levine, H., & Tsimring, L.S., 2000, Discrete stochastic modeling of calcium channel dynamics, Phys. Rev. Lett. 84:5664–5667.

    Article  PubMed  Google Scholar 

  • Batsilas, L., Berezhkovskii, A.M., & Shvartsman, S.Y., 2003, Stochastic model of autocrine and paracrine signals in cell culture assays, Biophys. J. 85:3659–3665.

    PubMed  CAS  Google Scholar 

  • Berry, H., 2003, Nonequilibrium phase transition in a self-activated biological network, Phys. Rev. E 67:031907.

    Article  CAS  Google Scholar 

  • Bhalla, U.S., 2004, Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways, Biophys. J. 87:733–744.

    Article  PubMed  CAS  Google Scholar 

  • Binder, K., & Heermann, D.W., 1997, Monte Carlo Simulation in Statistical Physics, Springer, Berlin, Germany.

    Google Scholar 

  • Dammer, S.M., & Hinrichsen, H., 2003, Epidemic spreading with immunization and mutations, Phys. Rev. E 68:016114.

    Article  CAS  Google Scholar 

  • De Kievit, T.R., & Iglewski, B.H., 2000, Bacterial quorum sensing in pathogenic relationships, Infect. Imun. 68:4839–4849.

    Article  Google Scholar 

  • Dent, P., Reardon, D.B., Park, J.S., Bowers, G., Logsdon, C., Valerie, K., Schmidt-Ullrich, R., 1999, Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death, Mol. Biol. Cell 10:2493–2506.

    PubMed  CAS  Google Scholar 

  • Ferreira, C.P., & Fontanari, J.F., 2002, Nonequilibrium phase transition in a model for the origin of life, Phys. Rev. E 65:021902.

    Article  CAS  Google Scholar 

  • Freeman, M., 2000, Feedback control of intercellular signalling in development, Nature 408:313–319.

    Article  PubMed  CAS  Google Scholar 

  • Gloster, J., Freshwater, A., Sellers, R.F., & Alexandersen, S., 2005, Re-assessing the likelihood of airborne spread of foot-and-mouth disease at the start of the 1967–1968 UK foot-and-mouth disease epidemic, Epidemiol. Infect. 133:767–783.

    Article  PubMed  CAS  Google Scholar 

  • Grassberger, P., 1982, On phase transitions in Schlögl’s second model, Z. Phys. B 47:365–374.

    Article  CAS  Google Scholar 

  • Hammond, G.W., Raddatz, R.L., & Gelskey, D.E., 1989, Impact of atmospheric dispersion and transport of viral aerosols on the epidemiology of influenza, Rev. Infect. Dis. 11:494–497.

    PubMed  CAS  Google Scholar 

  • Hinrichsen, H., 2006, Non-equilibrium phase transitions, Physica A 369:1–28.

    Article  Google Scholar 

  • Hinrichsen, H., 2000a, Nonequilibrium critical phenomena and phase transitions into absorbing states, Adv. Phys. 49:815–958.

    Article  CAS  Google Scholar 

  • Hinrichsen, H., 2000b, On possible experimental realizations of directed percolation, Braz. J. Phys. 30:69–82.

    Article  CAS  Google Scholar 

  • James, S., Nilsson, P., James, G., Kjelleberg, S., & Fagerström, T., 2000, Luminescence control in the marine bacterium Vibrio fischeri: An analysis of the dynamics of lux regulation, J. Mol. Biol. 296:1127–1137.

    Article  PubMed  CAS  Google Scholar 

  • Lipowski, A., & Liposwka, D., 2000, Nonequilibrium phase transition in a lattice prey-predator system, Physica A 276:456–464.

    Article  Google Scholar 

  • Lübeck, S., & Heger, P.C., 2003, Universal finite-size scaling behavior and universal dynamical scaling behavior of absorbing phase transitions with a conserved field, Phys. Rev. E 68:056102.

    Article  CAS  Google Scholar 

  • Nikolic, D., Boettiger, A., Bar-Sagi, D., Carbeck, J., & Shvartsman, S., 2006, Role of boundary conditions in an experimental model of epithelial wound healing, Am. J. Physiol. Cell Physiol. 291:C68–C75.

    Article  PubMed  CAS  Google Scholar 

  • Odor, G., 2004, Universality classes in nonequilibrium lattice systems, Rev. Mod. Phys. 76:663–724.

    Article  CAS  Google Scholar 

  • Ortega, N.R.S., Pinheiro, F.S., Tomé, T., & Drugowich de Felicio, J.R., 1998, Critical behavior of a probabilistic cellular automaton describing a biological system, Physica A 255:189–200.

    Article  Google Scholar 

  • Pribyl, M., Muratov, C.B., & Shvartsman, S.Y., 2003a, Long-range signal transmission in autocrine relays, Biophys. J. 84:883–896.

    CAS  Google Scholar 

  • Pribyl, M., Muratov, C.B., & Shvartsman, S.Y., 2003b, Discrete models of autocrine cell communication in epithelial layers, Biophys. J. 84:3624–3635.

    CAS  Google Scholar 

  • Rao, C.V., Wolf, D.M., & Arkin, A.P., 2002, Control, exploitation and tolerance of intracellular noise, Nature 420:231–237.

    Article  PubMed  CAS  Google Scholar 

  • Raser, J.M., & O’Shea, E.K., 2005, Noise in gene expression: origins, consequences, and control, Science 309:2010–2013.

    Article  PubMed  CAS  Google Scholar 

  • Sahimi, M., 1994, Applications of Percolation Theory, Taylor & Francis, UK.

    Google Scholar 

  • Samoilov, M.S., Price, G., & Arkin, A.P., 2006, From fluctuations to phenotypes: the physiology of noise, Sci. STKE 366:re17.

    Article  Google Scholar 

  • Shvartsman, S.Y., Wiley, H.S., Deen, W.M., & Lauffenburger, D.A., 2001, Spatial range of autocrine signalling: modelling and computational analysis, Biophys. J. 81:1854–1867.

    Article  PubMed  CAS  Google Scholar 

  • Suel, G.M., Garcia-Ojalvo J., Liberman, L.M., Elowitz, M.B., Tian, T., & Burrage, K., 2006, An excitable gene regulatory circuit induces transient cellular differentiation, Nature 440:545–550.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, G., Gergely, H., & Oborny, B., 2002, Generalized contact process on random environments, Phys. Rev. E 65:066111.

    Article  CAS  Google Scholar 

  • Tian, T., & Burrage, K., 2006, Stochastic models for regulatory networks of the genetic toggle switch, Proc. Natl. Acad. Sci. USA 103:8372–8377.

    Google Scholar 

  • Timofeeva, Y., & Coombes, S., 2004, Directed percolation in a two-dimensional stochastic fire-diffuse-fire model, Phys. Rev. E 70:062901.

    Article  CAS  Google Scholar 

  • Vilar, J.M., Guet, C.C., & Leibler, S., 2003, Modeling network dynamics: the lac operon, a case study, J. Cell Biol. 161:471–476.

    Article  PubMed  CAS  Google Scholar 

  • Wiley, H.S., Shvartsman, S.Y., & Lauffenburger, D., 2003, Computational modeling of the EGF-receptor systems: a paradigm for systems biology, Trends Cell Biol. 13:43–50.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, D., & ben-Avraham, D., 1995, University class of two-offspring branching-annihilating random walks, Phys. Lett. A 209:333–337.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Berry, H. (2008). Nonequilibrium Phase Transition in Scattered Cell Communities Coupled by Auto/Paracrine-Like Signalling. In: Pollack, G.H., Chin, WC. (eds) Phase Transitions in Cell Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8651-9_2

Download citation

Publish with us

Policies and ethics