Advertisement

On the Reversible Abrupt Structural Changes in Nerve Fibers Underlying Their Excitation and Conduction Processes

  • Ichiji Tasaki

Abstract

The cortical gel layer of nerve fibers has the properties of a cation-exchanger. Hence, this layer can, and actually does, undergo a reversible abrupt structural change when monovalent cations (e.g. Na$+$) are substituted for the divalent counter-ions (e.g. Ca$2+$). This structural change brings about a sudden rise in the water content of the layer which in turn produces a large enhancement of cation mobilities accompanied by a shift of ion-selectivity in favor of hydrophilic cations. Based on these grounds, it is argued that the electrophysiological processes known as “nerve excitation and conduction” are, basically, manifestations of abrupt structural changes in the cortical gel layer. In recent studies, we have shown that several aspects of the excitation phenomena can actually be reproduced by using synthetic polyanionic hydrogels in place of living nervous tissues. It is noted that these studies of synthetic model systems lead us to a better understanding of the process of divalent-monovalent cation-exchange in natural and artificial polyanionic gels.

Keywords

Nerve excitation and conduction structural phase transition in nerve fiber divalent-monovalent cation-exchange 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cole, K. S. and Curtis, H. J., 1939. Electric impedance of the squid giant axon during activity. J. Gen. Physiol. 22, 649–670CrossRefPubMedGoogle Scholar
  2. Cole, K. S. and Hodgkin, A. L, 1939. Membrane and protoplasm resistance in the squid giant axon. J. Gen. Physiol.22, 671–687CrossRefPubMedGoogle Scholar
  3. Doty, P. and Yang, J. T., 1956. Polypeptides. VII. Poly-$UPγ$-benzyl-L-glutamate: The helix-coil transition in solution. J. Am. Chem. Soc. 78, 498–500CrossRefGoogle Scholar
  4. Hermann, L., 1879. Allgemeine Nervenphysiologie in Handbuch der Physiologie,1ster Theil, 1–196. F. C. W. Vogel, LeipzigGoogle Scholar
  5. Hodgkin, A. L. and Huxley, A. F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117, 500–544Google Scholar
  6. Hodgkin, A. L. and Keynes, R. D., 1957. Movement of labelled calcium in squid giant axons.J. Physiol. (London) 138, 253–281Google Scholar
  7. Huizenga, J. R., Grieger, P. F., and Wall, F. T., 1950. Electrolytic properties of aqueous solutions of polyacrylic acid and sodium hydroxide. I. Transference experiments using radioactive sodium.J. Am. Chem. Soc. 72, 2636–4232CrossRefGoogle Scholar
  8. Ikegami, A., 1964. Hydration and ion binding of polyelectrolytes. J. Polymer Sci. A. 2, 907–921Google Scholar
  9. Iwasa, K. and Tasaki, I., 1980. Mechanical changes in squid giant axons associated with production of action potentials. Biochem.Biophys. Res. Commun. 95, 1328–1331PubMedCrossRefGoogle Scholar
  10. Katchalsky, A. and Zwick, M., 1955. Mechanochemistry and ion exchange. J. Polymer Sci. 16, 221–234CrossRefGoogle Scholar
  11. Kern, W., 1939. Der osmotische Druck wässeriger Lösungen polyvalenter Säuren und ihrer Salze. Z. phys. Chem. A 184, 197–210Google Scholar
  12. Kuhn, W., 1962. Ändeung von chemischen Gleichgewichten und Lösligkeitgleichgewichten bei mechanischer Dehnung von Gelen.Koloid Z. u. Z. f. Polym. 182, 40–50CrossRefGoogle Scholar
  13. Levine, B. A. and Williams, R. J. P., 1982. The chemistry of calcium ion and its biological relevance. In:The role of calcium in biological systems(L. J. Anghileri and A. M. Tuffet-Anghileri eds), CRC Press, Inc. Florida. pp. 3–26Google Scholar
  14. Loeb. J., 1900. On ion-proteid compounds and their role in the mechanics of the life phenomena. I. The poisonous character of a pure NaCl solution. Am. J. Physiol. 3, 327–338Google Scholar
  15. Loeb, J., 1906. The Dynamics of the Living Matter, Columbia University Press., New YorkGoogle Scholar
  16. Matsumoto, G. and Tasaki, I. (1977) A study of conduction velocity in nonmyelinated nerve fiber. Biophys. J. 20, 1–13PubMedCrossRefGoogle Scholar
  17. McClure, W. O. and Edelman, G. M., 1966. Fluorescent probes for conformational states of proteins. I. Mechanism of 2-p-toluidinylnaphthalene-6-sulfonate, a hydrophobic probe.Biochemistry. 5, 1908–1918PubMedCrossRefGoogle Scholar
  18. Nernst, W., 1908. Zur Theorie des elektrischen Reizes. Pflügers Arch. f. d. ges. Physiol.122, 275–314CrossRefGoogle Scholar
  19. Ptitsyn, O. B., Kron, A. K., and Eizner, Yu. Ye. 1968. The models of the denaturation of globular proteins. I. Theory of globula-coil transitions in macromolecules. J. Polymer Sci. C. 16,3509–3517Google Scholar
  20. Ringer, S., 1883. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. (London) 4, 29–42Google Scholar
  21. Tanaka, T., 1981. Gels. Sci. Am. 244, 110–123CrossRefGoogle Scholar
  22. Tang, J. X., Wong, S., Tran, P. T., and Janmey, P. A., 1996. Counterion induced bundle formation of rodlike polyelectrolytes. Ber. Bunsenges. Phys. Chem. 100, 796–806Google Scholar
  23. Tasaki, I., 1982. Physiology and Electrochemistry of Nerve Fibers. Academic Press New YorkGoogle Scholar
  24. Tasaki, I., 1999. Rapid structural changes in nerve fibers and cells associated with their excitation processes.Jpn. J. Physiol. 49, 125–136PubMedCrossRefGoogle Scholar
  25. Tasaki, I. 2002. Spread of discrete structural changes in synthetic polyanionic gels: A model of propagation of a nerve impulse. J. Theor. Biol. 218, 497–505PubMedGoogle Scholar
  26. Tasaki, I., 2005a. Abrupt structural changes in polyanionic gels evoked by Na-Ca ion exchange: Their biological implications. Macromol. Symp. 227, 97–104CrossRefGoogle Scholar
  27. Tasaki, I., 2005b. Repetitive abrupt structural changes in polyanionic gels: A comparison with analogous processes in nerve fibers. J. Theor. Biol. 236, 2–11CrossRefGoogle Scholar
  28. Tasaki, I., 2006. A note on the local current associated with the rising phase of a propagating impulse in nonmyelinated nerve fibers. Bull. Math. Biol. 68, 483–490PubMedCrossRefGoogle Scholar
  29. Tasaki, I. and Byrne P. M., 1992. Discontinuous volume transition in ionic gels and their possible involvement in the nerve excitation process. Biopolymers. 32. 1019–1023PubMedCrossRefGoogle Scholar
  30. Tasaki, I. and Byrne, P. M., 1994. Discontinuous volume transition induced by calcium-sodium ion exchange in anionic gels and their neurobiological implications. Biopolymers. 34, 209–215PubMedCrossRefGoogle Scholar
  31. Tasaki, I., Carbone, E., Sisco, K., and Singer, I., 1973. Analyses of extrinsic fluorescence of the nerve membrane labeled with aminonaphthalene derivatives. Biochim. Biophys. Acta.323, 220–233PubMedCrossRefGoogle Scholar
  32. Tasaki, I. and Iwasa, K., 1982. Rapid pressure changes and surface displacements in the squid giant axons associated with production of action potentials.Jpn. J. Physiol. 32, 69–81PubMedGoogle Scholar
  33. Tasaki, I. and Matsumoto, G., 2002. On the cable theory of nerve conduction. Bull. Math, Biol. 64, 1069–1082CrossRefGoogle Scholar
  34. Tasaki, I., Singer, I., and Takenaka, T., 1965. Effects of internal and external ionic environment on excitability of squid giant axon. A macromolecular approach. J. Gen. Physiol. 48, 1095–1123PubMedCrossRefGoogle Scholar
  35. Tasaki, I., Watanabe, A., Sandlin, R., and Carnay, L, 1968. Changes in fluorescence, turbidity and birefringence associated with nerve excitation.Proc. Nat. Acad. Sci. U.S.A. 61, 883–888Google Scholar
  36. Weber, G. and Laurence, D. J. R., 1954. Fluorescent indicators of adsorption in aqueous solution and on the solid phase.Biochem. J. 56, 31Google Scholar
  37. Williams, R.J. P., 1970. Tilden Lecture. The biochemistry of sodium, potassium, magnesium and calcium. Quart. Rev. Chem. Soc. 24, 331–365CrossRefGoogle Scholar
  38. Zimm, B. H. and Bragg, J. K., 1959. Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem Phys. 31, 526–535CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ichiji Tasaki
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations