Observation of Dopant Distribution in Compound Semiconductors Using Off-axis Electron Holography

  • H Sasaki
  • S Ootomo
  • T Matsuda
  • K Yamamoto
  • T Hirayama
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 120)

Summary

This paper describes a method to map dopant distributions in compound semiconductors by off-axis electron holography. A cross-sectional transmission electron microscopy (TEM) specimen with n+, n− and p gallium arsenide thin films was prepared using the micro-sampling technique of a focused ion beam and Ar+ ion milling. A phase map was obtained by off-axis phase-shifting electron holography, and the dopant distributions across a p–n junction are clearly observed. Furthermore, the low and high dopant concentration regions are remarkably distinguished with high contrast.

Keywords

Platinum Epoxy Tungsten Milling GaAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCartney M R, Smith D J, Hull R, Bean J C, Voelkl E and Frost B 1994 Appl. Phys. Lett. 65,2603CrossRefADSGoogle Scholar
  2. 2.
    Rau W D, Schwander P, Baumann F H, Hoppner W and Ourmazd A 1999 Phys. Rev. Lett. 82,2614CrossRefADSGoogle Scholar
  3. 3.
    Wang Z, Hirayama T, Sasaki K, Saka H and Kato N 2002 Appl. Phys. Lett. 80, 246CrossRefADSGoogle Scholar
  4. 4.
    Twitchett A C, Dunin-Borkowski R E and Midgley P A 2002 Phys. Rev. Lett. 88, 238CrossRefGoogle Scholar
  5. 5.
    Wang Z, Kato T, Hirayama T, Kato N, Sasaki K and Saka H 2005 Appl. Surf. Sci. 241, 80CrossRefADSGoogle Scholar
  6. 6.
    Yabuuchi A, Tametou S, Okano T, Inazato S, Sadayama S, Yamamoto Y, Iwasaki K and Sugiyama Y 2004 J. Electron Microsc. 53, 471CrossRefGoogle Scholar
  7. 7.
    Tanabe K, Matsuda T, Sasaki H and Iwase F 2005 Proc. 14th Int. Conf. Microscopy of Semiconducting Materials (Springer, Berlin) pp. 417–420CrossRefGoogle Scholar
  8. 8.
    Cooper D, Twitchett A C, Somodi P K, Midgley P A, Dunin-Borkowski R E, Farrer I and Ritchie D A 2006 Appl. Phys. Lett. 88, 063510CrossRefADSGoogle Scholar
  9. 9.
    Sasaki H, Matsuda T, Kato T, Muroga T, Iijima Y, Saitoh T, Iwase F, Yamada Y, Izumi T,Shiohara Y and Hirayama T 2004 J. Electron Microsc. 53, 497CrossRefGoogle Scholar
  10. 10.
    Ru Q, Endo J, Tanji T and Tonomura A 1991 Appl. Phys. Lett. 59, 2372CrossRefADSGoogle Scholar
  11. 11.
    Yamamoto K, Kawajiri I, Tanji T, Hibino M and Hirayama T 2000 J. Electron Microsc. 49, 31Google Scholar
  12. 12.
    Sasaki H, Yamamoto K, Hirayama T, Ootomo S, Matsuda T, Iwase F, Nakasaki R and Ishii H 2006 Appl. Phys. Lett. 89, 244101CrossRefADSGoogle Scholar
  13. 13.
    Spicer W E, Chye P W, Skeath P R, Su C Y and Lindau I 1979 J. Vac. Sci. Technol. 16, 1422CrossRefADSGoogle Scholar
  14. 14.
    Monch W 1983 Surf. Sci. 132, 92CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • H Sasaki
    • 1
  • S Ootomo
    • 1
  • T Matsuda
    • 1
  • K Yamamoto
    • 2
  • T Hirayama
    • 2
  1. 1.Yokohama R&D LabFurukawa Electric LtdNishi-kuJapan
  2. 2.Japan Fine Ceramics CenterAtsuta-kuJapan

Personalised recommendations