Advertisement

Band-Gap Modification Induced in HgTe by Dimensional Constraint in Carbon Nanotubes: Effect of Nanotube Diameter on Microstructure

  • J Sloan
  • R Carter
  • A Vlandas
  • R R Meyer
  • Z Liu
  • K Suenaga
  • P J D Lindan
  • G Lin
  • J Harding
  • E Flahaut
  • C Giusca
  • S R P Silva
  • J L Hutchison
  • A I Kirkland
Part of the Springer Proceedings in Physics book series (SPPHY, volume 120)

Summary

A new tubular form of HgTe grown in narrow single walled carbon nanotubes is described with Hg and Te in reduced coordination. Two unique projections obtained by HRTEM from two separate crystal fragments enabled reconstruction of the atomic arrangement of the new form. DFT confirmed the stability of the new structure and that it has a modified band gap, transforming HgTe from a semimetal to a semiconductor (band gap +1.3eV). HRTEM shows that as the nanotube diameter increases, the new form is no longer obtained and for diameters of 1.6-2 nm, disordered HgTe is obtained, for diameters >2 nm, sphalerite HgTe is obtained.

Keywords

Single Walled Carbon Nanotubes Double Walled Carbon Nanotubes Tubular Form Dimensional Constraint Relative Orientation Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Duan X, Niu C, Sahi V, Chen J, Parce J W, Empedocles S and Goldman J L 2003 Nature425, 274PubMedCrossRefADSGoogle Scholar
  2. 2.
    Sloan J, Kirkland A I, Hutchison J L, Green M L H 2002 Chem. Commun, 2002, 1319Google Scholar
  3. 3.
    Carter R, Sloan J, Kirkland AI, Meyer R, Lindan P J D, Lin G, Green M L H, Vlandas A,Hutchison J L, Harding J 2006 Phys. Rev. Lett.96, 215501PubMedCrossRefADSGoogle Scholar
  4. 4.
    Sloan J, Wright D M, Woo H G, Bailey S R, Brown G, York A P E, Coleman K S, Hutchison J L, Green M L H 1999 Chem Commun., 699Google Scholar
  5. 5.
    Coene W, Janssen G, Op de Beeck M and Van Dyck D 1992 Phys. Rev. Lett.69, 3743PubMedCrossRefADSGoogle Scholar
  6. 6.
    Kirkland A I and Meyer R. 2004 Microsc. Microanal.10, 401PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J Sloan
    • 1
  • R Carter
    • 2
  • A Vlandas
    • 2
  • R R Meyer
    • 2
  • Z Liu
    • 3
  • K Suenaga
    • 3
  • P J D Lindan
    • 4
  • G Lin
    • 4
  • J Harding
    • 5
  • E Flahaut
    • 6
  • C Giusca
    • 1
  • S R P Silva
    • 1
  • J L Hutchison
    • 2
  • A I Kirkland
    • 2
  1. 1.Advanced Technology Institute, School of Electronics and Physical SciencesUniversity of SurreyGuildfordUK
  2. 2.Department of MaterialsUniversity of OxfordOxfordUK
  3. 3.AIST, Research Centre for Advanced Carbon MaterialsTsukubaJapan
  4. 4.School of Physical SciencesUniversity of KentCanterburyUK
  5. 5.Department of Engineering and MaterialsSheffieldUK
  6. 6.Centre Interuniversitaire de Recherche d'Ingénierie sur les MatériauxUniversité Paul SabatierToulouse Cedex 9France

Personalised recommendations