Progress in Aberration-Corrected High-Resolution Transmission Electron Microscopy of Crystalline Solids

  • K Tillmann
  • J Barthel
  • L Houben
  • C L Jia
  • M Lentzen
  • A Thust
  • K Urban
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 120)


With impressive improvements in instrumental resolution and a simultaneous minimisation of image delocalisation, high-resolution transmission electron microscopy is presently enjoying increased popularity in the atomic-scale imaging of lattice imperfections in a variety of solids. In the present overview, recent progress in spherical aberration corrected imaging performed in troika with the ultra-precise measurement of residual wave aberrations and the numerical retrieval of the exit plane wavefunction from focal series of micrographs is illustrated by highlighting their combined use for the atomic-scale measurement of common lattice imperfections observed in compound semiconductors and high-temperature superconductors.


Spherical Aberration Lattice Imperfection Wave Aberration Aberration Coefficient Focal Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hirsch P B, Horne WH and Whelan M J 1956 Phil. Mag. 1, 677CrossRefADSGoogle Scholar
  2. 2.
    Menter J W 1956, Proc. Roy. Soc. A 236, 119CrossRefADSGoogle Scholar
  3. 3.
    Bollmann W 1956 Phys. Rev. 103, 1588CrossRefADSGoogle Scholar
  4. 4.
    Rose H 1990 Optik 85, 19Google Scholar
  5. 5.
    Haider M, Rose H, Uhlemann S, Schwan E, Kabius B and Urban K 1998 Ultramicroscopy 75, 53CrossRefGoogle Scholar
  6. 6.
    Tiemeijer P C 1999 Ultramicroscopy 78, 53CrossRefGoogle Scholar
  7. 7.
    Kahl F and Rose H 2000 Proc. EUREM-2000, Vol. 3, eds P Schaue r, I Müllerová and L Frank (Brno: Czek Microscopy Society) ppGoogle Scholar
  8. 8.
    Su D S, Zandbergen H W, Tiemeijer P C 2003 Micron 34, 235PubMedCrossRefGoogle Scholar
  9. 9.
    Lentzen M, Jahnen B, Jia C L, Thust A, Tillmann K and Urban K 2002 Ultramicroscopy 92, 233PubMedCrossRefGoogle Scholar
  10. 10.
    Lentzen M 2006 Microsc. Microanal. 12, 191PubMedCrossRefADSGoogle Scholar
  11. 11.
    Uhlemann S and Haider M 1998 Ultramicroscopy 72, 109CrossRefGoogle Scholar
  12. 12.
    Coene W M J, Janssen G, Op de Beeck M and van Dyck D 1992 Phys. Rev. Lett. 69, 3743PubMedCrossRefADSGoogle Scholar
  13. 13.
    Thust A, Coene W M J, Op de Beeck M and van Dyck D 1996 Ultramicroscopy 64, 211CrossRefGoogle Scholar
  14. 14.
    Kirkland A I, Saxton O W, Chau K L, Tsuno K and Kawasaki M 1995 Ultramicroscopy 57, 355CrossRefGoogle Scholar
  15. 15.
    Lichte H 1986 Ultramicroscopy 20, 293CrossRefGoogle Scholar
  16. 16.
    Lehmann M and Lichte H 2002 Microsc. Microanal. 8, 447PubMedCrossRefADSGoogle Scholar
  17. 17.
    Jia C L, Lentzen M and Urban K 2003 Science 299, 870PubMedCrossRefADSGoogle Scholar
  18. 18.
    Hartel P, Müller H, Uhlemann S and Haider M 2004 Proc. EMC-2004, eds N Schryvers and J P Timmermanns (Antwerp: Belgian Society for Microscopy), pp IM01.P02Google Scholar
  19. 19.
    Barthel J 2007 PhD Thesis RWTH Aachen UniversityGoogle Scholar
  20. 20.
    Zemlin F, Weiss K, Schiske P, Kunath W and Herrmann K H 1978 Ultramicroscopy 3, 49CrossRefGoogle Scholar
  21. 21.
    Hawkes P and Kapser E 1989 Principles of Electron Optics (London: Academic Press)Google Scholar
  22. 22.
    Tillmann K, Thust A and Urban K 2004 Microsc. Microanal. 10, 185PubMedADSGoogle Scholar
  23. 23.
    Houben L, Thust A and Urban K 2006 Ultramicroscopy 106, 200PubMedCrossRefGoogle Scholar
  24. 24.
    Tillmann K, Houben L and Thust A 2006 Phil. Mag. 86, 4589CrossRefADSGoogle Scholar
  25. 25.
    Kilaas R, Paciornik S, Schwartz AJ and Tanner L E 1994 Journal of Computer-Assisted Microscopy 6, 129Google Scholar
  26. 26.
    Tillmann K, Houben L, Thust A and Urban K 2006 J. Mater. Sci. 41, 4420CrossRefGoogle Scholar
  27. 27.
    Guzenko VA,Thillosen N, Dahmen A, Calarco R, Schäpers T, Houben L, Schineller B, Heuken M and Kaluza A 2004 J. Appl. Phys. 96, 5663CrossRefADSGoogle Scholar
  28. 28.
    Kisielowski C, Freitag B, Xu X, Beckmann SP and Chrzan D C 2006 Phil. Mag. 86, 4575CrossRefADSGoogle Scholar
  29. 29.
    Lim S H, Shindo D, Yonenaga I, Brown PD and Humphreys C J 1998 Phys. Rev. Lett. 81, 5350CrossRefADSGoogle Scholar
  30. 30.
    Hirth JP and Lothe J 1968 Theory of Dislocations (New York: McGraw-Hill)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • K Tillmann
    • 1
  • J Barthel
    • 1
  • L Houben
    • 1
  • C L Jia
    • 1
  • M Lentzen
    • 1
  • A Thust
    • 1
  • K Urban
    • 1
  1. 1.Institute of Solid State Research and Ernst Ruska-Centre for Microscopy and Spectroscopy with ElectronsResearch Centre JülichJülichGermany

Personalised recommendations