Skip to main content

Progress in Aberration-Corrected High-Resolution Transmission Electron Microscopy of Crystalline Solids

  • Conference paper
Book cover Microscopy of Semiconducting Materials 2007

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 120))

  • 2197 Accesses

Summary

With impressive improvements in instrumental resolution and a simultaneous minimisation of image delocalisation, high-resolution transmission electron microscopy is presently enjoying increased popularity in the atomic-scale imaging of lattice imperfections in a variety of solids. In the present overview, recent progress in spherical aberration corrected imaging performed in troika with the ultra-precise measurement of residual wave aberrations and the numerical retrieval of the exit plane wavefunction from focal series of micrographs is illustrated by highlighting their combined use for the atomic-scale measurement of common lattice imperfections observed in compound semiconductors and high-temperature superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirsch P B, Horne WH and Whelan M J 1956 Phil. Mag. 1, 677

    Article  ADS  CAS  Google Scholar 

  2. Menter J W 1956, Proc. Roy. Soc. A 236, 119

    Article  ADS  CAS  Google Scholar 

  3. Bollmann W 1956 Phys. Rev. 103, 1588

    Article  ADS  CAS  Google Scholar 

  4. Rose H 1990 Optik 85, 19

    Google Scholar 

  5. Haider M, Rose H, Uhlemann S, Schwan E, Kabius B and Urban K 1998 Ultramicroscopy 75, 53

    Article  CAS  Google Scholar 

  6. Tiemeijer P C 1999 Ultramicroscopy 78, 53

    Article  CAS  Google Scholar 

  7. Kahl F and Rose H 2000 Proc. EUREM-2000, Vol. 3, eds P Schaue r, I Müllerová and L Frank (Brno: Czek Microscopy Society) pp

    Google Scholar 

  8. Su D S, Zandbergen H W, Tiemeijer P C 2003 Micron 34, 235

    Article  PubMed  CAS  Google Scholar 

  9. Lentzen M, Jahnen B, Jia C L, Thust A, Tillmann K and Urban K 2002 Ultramicroscopy 92, 233

    Article  PubMed  CAS  Google Scholar 

  10. Lentzen M 2006 Microsc. Microanal. 12, 191

    Article  PubMed  ADS  CAS  Google Scholar 

  11. Uhlemann S and Haider M 1998 Ultramicroscopy 72, 109

    Article  CAS  Google Scholar 

  12. Coene W M J, Janssen G, Op de Beeck M and van Dyck D 1992 Phys. Rev. Lett. 69, 3743

    Article  PubMed  ADS  CAS  Google Scholar 

  13. Thust A, Coene W M J, Op de Beeck M and van Dyck D 1996 Ultramicroscopy 64, 211

    Article  CAS  Google Scholar 

  14. Kirkland A I, Saxton O W, Chau K L, Tsuno K and Kawasaki M 1995 Ultramicroscopy 57, 355

    Article  CAS  Google Scholar 

  15. Lichte H 1986 Ultramicroscopy 20, 293

    Article  CAS  Google Scholar 

  16. Lehmann M and Lichte H 2002 Microsc. Microanal. 8, 447

    Article  PubMed  ADS  CAS  Google Scholar 

  17. Jia C L, Lentzen M and Urban K 2003 Science 299, 870

    Article  PubMed  ADS  CAS  Google Scholar 

  18. Hartel P, Müller H, Uhlemann S and Haider M 2004 Proc. EMC-2004, eds N Schryvers and J P Timmermanns (Antwerp: Belgian Society for Microscopy), pp IM01.P02

    Google Scholar 

  19. Barthel J 2007 PhD Thesis RWTH Aachen University

    Google Scholar 

  20. Zemlin F, Weiss K, Schiske P, Kunath W and Herrmann K H 1978 Ultramicroscopy 3, 49

    Article  Google Scholar 

  21. Hawkes P and Kapser E 1989 Principles of Electron Optics (London: Academic Press)

    Google Scholar 

  22. Tillmann K, Thust A and Urban K 2004 Microsc. Microanal. 10, 185

    PubMed  ADS  CAS  Google Scholar 

  23. Houben L, Thust A and Urban K 2006 Ultramicroscopy 106, 200

    Article  PubMed  CAS  Google Scholar 

  24. Tillmann K, Houben L and Thust A 2006 Phil. Mag. 86, 4589

    Article  ADS  CAS  Google Scholar 

  25. Kilaas R, Paciornik S, Schwartz AJ and Tanner L E 1994 Journal of Computer-Assisted Microscopy 6, 129

    Google Scholar 

  26. Tillmann K, Houben L, Thust A and Urban K 2006 J. Mater. Sci. 41, 4420

    Article  CAS  Google Scholar 

  27. Guzenko VA,Thillosen N, Dahmen A, Calarco R, Schäpers T, Houben L, Schineller B, Heuken M and Kaluza A 2004 J. Appl. Phys. 96, 5663

    Article  ADS  CAS  Google Scholar 

  28. Kisielowski C, Freitag B, Xu X, Beckmann SP and Chrzan D C 2006 Phil. Mag. 86, 4575

    Article  ADS  CAS  Google Scholar 

  29. Lim S H, Shindo D, Yonenaga I, Brown PD and Humphreys C J 1998 Phys. Rev. Lett. 81, 5350

    Article  ADS  CAS  Google Scholar 

  30. Hirth JP and Lothe J 1968 Theory of Dislocations (New York: McGraw-Hill)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this paper

Cite this paper

Tillmann, K. et al. (2008). Progress in Aberration-Corrected High-Resolution Transmission Electron Microscopy of Crystalline Solids. In: Cullis, A.G., Midgley, P.A. (eds) Microscopy of Semiconducting Materials 2007. Springer Proceedings in Physics, vol 120. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8615-1_30

Download citation

Publish with us

Policies and ethics