Recent Studies of Heteroepitaxial Systems

  • David J Smith
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 120)


Electron microscopy methods have been used extensively in recent collaborative studies involving the growth and characterization of semiconductor heterostructures and nanostructures. Examples that are described here include epilayers and nanowires, as well as quantum wells and quantum dots, while the heteroepitaxial systems represented include II-VI, III–V and IV–IV compounds as well as mixed valence materials. Ferromagnetic Cr-doped nitride semiconductors are also briefly discussed. Control over the growth and processing conditions in concert with the microstructural information available from electron microscopy is confirmed as being essential for achieving materials of the highest possible quality.


Misfit Dislocation Molecular Beam Epitaxy Growth Electron Microscopy Method Lateral Phase Separation Heteroepitaxial System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bravman J and Sinclair R 1984 J. Electr. Micro. Tech.1, 53CrossRefGoogle Scholar
  2. 2.
    Cullis A G, Chew N G and Hutchison J L 1985 Ultramicroscopy17, 203CrossRefGoogle Scholar
  3. 3.
    Wang C, Smith D J, Tobin S, Parodos T, Zhao J, Chang Y and Sivananthan S 2006 J. Vac. Sci. Technol. A24, 995CrossRefGoogle Scholar
  4. 4.
    Aoki T, Chang Y, Badano G, Zhao J, Grein C, Sivananthan S and Smith D J 2004 J. Cryst. Growth265, 224CrossRefADSGoogle Scholar
  5. 5.
    Aoki T, Smith D J, Chang Y, et al 2003 Appl. Phys. Lett.82, 2275CrossRefADSGoogle Scholar
  6. 6.
    Preinesberger C, Becker S K, Vandre S, et al 2002 J. Appl. Phys.91, 1695CrossRefADSGoogle Scholar
  7. 7.
    He Z, Stevens M, Smith D J, Bennett P A 2003 Appl. Phys. Lett.83, 5292CrossRefADSGoogle Scholar
  8. 8.
    He Z, Smith D J and Bennett P A 2004 Phys. Rev. Lett.93, 256102PubMedCrossRefADSGoogle Scholar
  9. 9.
    Chaparro S A, Zhang Y, Drucker J, et al 2000 J. Appl. Phys.87, 2245CrossRefADSGoogle Scholar
  10. 0.
    Smith D J, Chaparro S, Crozier P A, et al 2004 J. Cryst. Growth259, 232CrossRefGoogle Scholar
  11. 1.
    Chaparro S A, Drucker J, Zhang Y, Chandrasekhar D, McCartney M R and Smith D J 1999 Phys. Rev. Lett.93, 1199CrossRefADSGoogle Scholar
  12. 2.
    Floyd M A, Zhang Y T, Driver K P, et al 2003 Appl. Phys. Lett.82, 1473CrossRefADSGoogle Scholar
  13. 3.
    Stirman J N, Crozier P A, Smith, D J, et al 2004 Appl. Phys. Lett.84, 2530CrossRefADSGoogle Scholar
  14. 4.
    Phillipp F, Höschen R, Osaki M, et al 1995 Ultramicroscopy56, 1CrossRefGoogle Scholar
  15. 5.
    Zhou L, Xu T, Smith D J and Moustakas T D 2006 Appl. Phys. Lett.88, 231906CrossRefADSGoogle Scholar
  16. 6.
    Katzer D S, Storm D F, Binari B V, et al 2005 J. Vac. Sci. Technol. B23, 1204CrossRefGoogle Scholar
  17. 7.
    Zhou L, Smith D J, McCartney M R, et al 2007 Appl. Phys. Lett.90, 081917CrossRefADSGoogle Scholar
  18. 8.
    Wu, S Y, Liu H X, Gu L, Singh R K, Budd L, van Schilfgaarde M, McCartney M R, Smith D J and Newman N 2003 Appl. Phys. Lett.82, 3047CrossRefADSGoogle Scholar
  19. 9.
    Liu H X, Wu S K, Singh R K, et al Appl. Phys. Lett.85, 4076Google Scholar
  20. 0.
    Singh R K, Wu S Y, Liu H X, et al 2005 Appl. Phys. Lett.86, 012504CrossRefADSGoogle Scholar
  21. 1.
    Gu L, Wu S Y, Liu H X, et al J. Magn. Magn. Mater.290/291, 1395Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • David J Smith
    • 1
  1. 1.Department of PhysicsArizona State UniversityTempeUSA

Personalised recommendations