The Factors Influencing the Stability of Scanning Capacitance Spectroscopy

  • Mao-Nan Chang
  • Tung-Huan Chou
  • Che-Yu Yang
  • Jeng-Hung Liang
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 120)


We have used front-wing conductive probes to investigate the factors that most obviously influence the stability of scanning capacitance spectroscopy (SCS). Photoperturbations and environmental humidity are the dominant factors influencing SCS stability of samples with a thermal oxide layer. Without photoperturbation and humidity problems, the peak difference between the traced and retraced SCS curves was stable, depending only on the dielectric thin film of the studied samples. The experimental results indicate that non-photoperturbed SCS with a dry ambient is a practical method for investigating the quality of dielectric thin films.


Environmental Humidity Dielectric Film Surface Trap Hysteresis Behavior Conductive Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham K W, Williams C C, Slinkman J and Wickramasinghe H K 1991 J. Vac. Sci. Technol. B 9, 703CrossRefGoogle Scholar
  2. 2.
    Kopanski J J, Marchiando J F, Berning D W, Alvis R and Smith H E 1998 J. Vac. Sci. Technol. B 16, 339CrossRefGoogle Scholar
  3. 3.
    Zavyalov V V, McMurray J S and Williams C C 1999 J. Appl. Phys. 85, 7774CrossRefADSGoogle Scholar
  4. 4.
    O'Malley M L, Timp G L, Timp W, Moccio S V, Garno J P and Kleiman R N 1999 Appl. Phys. Lett. 74, 3672CrossRefADSGoogle Scholar
  5. 5.
    Nakakura C Y, Hetherington D L, Shaneyfelt M R, Shea P J and Erickson A N 1999 Appl. Phys. Lett. 75, 2319CrossRefADSGoogle Scholar
  6. 6.
    Chang M N, Chen C Y, Pan F M, Chang T Y and Lei T F 2002 Electrochem. Solid-State Lett. 5, G69CrossRefGoogle Scholar
  7. 7.
    Leu C C, Chen C Y, Chien C H, Chang M N, Hsu F Y and Hu C T 2003 Appl. Phys. Lett. 82, 3493CrossRefADSGoogle Scholar
  8. 8.
    Hansen P J, Strausser Y E, Erickson A N, Tarsa E J, Kozodoy P, Brazel E G, Ibbetson J P, Mishra U, Narayanamurti V, DenBaars S P and Speck J S 1998 Appl. Phys. Lett. 72, 2247CrossRefADSGoogle Scholar
  9. 9.
    Edwards H, McGlothlin R, Martin R S, U E, Gribelyuk M, Mahaffy R, Shih C K, List R S and Ukraintsev V A 1998 Appl. Phys. Lett. 72, 698CrossRefADSGoogle Scholar
  10. 10.
    Chang M N, Chen C Y, Pan F M, Lai J H, Wan W W and Liang J H 2003 Appl. Phys. Lett. 82, 3955CrossRefADSGoogle Scholar
  11. 11.
    Chang M N, Chen C Y, Huang W J and Cheng T C 2005 Appl. Phys. Lett. 87, 023102CrossRefADSGoogle Scholar
  12. 12.
    Isenbart J, Born A and Wiesendanger R 2001 Appl. Phys. A: Mater. Sci. Process. 72, S243CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Mao-Nan Chang
    • 1
  • Tung-Huan Chou
    • 1
  • Che-Yu Yang
    • 2
  • Jeng-Hung Liang
    • 2
  1. 1.Division of Nano MetrologyNational Nano Device LaboratoriesHsinchuTaiwan
  2. 2.Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations