Metalliferous Sediments and Sedimentary Rock-Hosted Stratiform and/or Stratabound Hydrothermal Mineral Systems

Abstract

In this chapter I discuss and describe a range of hydrothermal mineral systems that are generated at passive margins, in basin structures of intracontinental or back-arc rifts, with or without obvious connection to igneous activity, seafloor metalliferous sediments and iron and manganese oxide accumulations. Passive margins and rift-related ore deposits include those known as Mississipi Valley-type (MVT), sedimentary exhalative polymetallic massive sulphides (SEDEX) and the Cu-rich stratabound and stratiform disseminated sulphides, all of which can be broadly grouped under the wider family of sedimentary-hydrothermal ore systems.

Keywords

Manganese Compaction Lithosphere Cambrian Ordovician 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen PA, Allen JR (1990) Basin analysis – principles and applications. Blackwell Scientific Publ, OxfordGoogle Scholar
  2. Allen PA, Allen JR (2005) Basin analysis: principles and applications, 2nd edn. Blackwell Scientific Publ, OxfordGoogle Scholar
  3. Allsopp HL, Welke HJ, Hughes MJ (1981) Shortening the odds in exploration. Nucl Act 24:8–12Google Scholar
  4. Anderson IK, Ashton JH, Boyce AJ, Fallick AE, Russell MJ (1998) Ore depositional processes in the Navan Zn-Pb deposit, Ireland. Econ Geol 93:535–564Google Scholar
  5. Anschutz P, Blanc G (1995) Chemical mass balances in metalliferous deposits from the Atlantis II Deep, Red Sea. Geochim Cosmochim Acta 59:4205–4218Google Scholar
  6. Anschutz P, Blanc G (1996) Heat and salt fluxes in the Atlantis II Deep (Red Sea). Earth Planet Sci Lett 142:147–159Google Scholar
  7. Awramik SM, Barghoorn ES (1977) The Gunflint microbiota. Precambr Res 5:121–142Google Scholar
  8. Baines SJ, Burley SD, Pize AP (1991) Sulphide mineralisation and hydrocarbon migration in North Sea oilfields. In: Pagel M, Leroy JC (eds) Source, transport and deposition of metals, Balkema, Rotterdam, 507–510Google Scholar
  9. Bäcker H, Richter H (1973) Die rezente hydrothermal sedimentäre Lagerstätte Atlantis-II Tief im Roten Meer. Geologische Rundschau 62:697–741Google Scholar
  10. Baker BH (1986) Tectonics and volcanism of the southern Kenya rift valley and its influence on rift sedimenation. Geol Soc London, Sp Publ 25:45–58Google Scholar
  11. Barberi F, Varet J (1978) The Afar rift junction. In: Neumann R, Ramberg IB (eds) Petrology and geochemistry of continental rifts, Reidel, Dordrecht, pp55–69Google Scholar
  12. Barberi F, Ferrara R, Santacroce R, Varet J (1975) Structural evolution of the Afar triple junction. In: Pilger A, Rosler A (eds) Afar depression of Ethiopia, Scheweizerbart, pp 38–54Google Scholar
  13. Barley ME, Pickard AL, Sylvester PJ (1997) Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago. Nature 385:55–58Google Scholar
  14. Barley ME, Pickard AL, Hagemann SG, Folkert SI (1999) Hydrothermal origin for the 2 billion year old Mount Tom Price giant ore deposit, Hamersley Province, Western Australia. Mineral Depos 34:784–789Google Scholar
  15. Barley ME, Bekker A, Krapež B (2005) Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet Sci Lett 238:156–171Google Scholar
  16. Bartholomé P (ed) (1973) Gisement stratiformes et provinces cupriferes. Geol Soc Belg, LiègeGoogle Scholar
  17. Bayer HJ, El-Isa Z, Hotzl H, Mechie J, Prodehil C, Saffarini G (1989) Large tectonic and lithospheric structures of the Red Sea region. J Afr Earth Sci 8:565–587Google Scholar
  18. Beaudoin G (1997) Proterozoic Pb isotope evolution in the Belt-Purcell Basin: constraints from syngenetic and epigenetic sulfide deposits. Econ Geol 92:343–350Google Scholar
  19. Beaumont C, Tankard AJ (eds) (1987) Sedimentary basins and basin-forming mechanisms. Can Soc Petrol Geol Monogr 12Google Scholar
  20. Betts PG, Giles D (2006) The 1800-1100 Ma tectonic evolution of Australia. Precambr Res 144:92–125Google Scholar
  21. Betts PG, Goleby BR (eds) (2006) Mt Isa tectonics. Aust J Earth Sci Thematic Issue 53(1)Google Scholar
  22. Betts PG, Giles D, Lister GS, Frick RL (2002) Evolution of the Australian lithosphere. Aust J Earth Sci 49:661–695Google Scholar
  23. Betts PG, Giles D, Lister GS (2003) Tectonic environment of shale-hosted massive sulphide Pb-Zn-Ag deposits of Proterozoic northeastern Australia. Econ Geo 98:557–576Google Scholar
  24. Beukes NJ, Klein C (1990) Geochemistry and sedimentology of a facies transition – from microbanded to granular iron-formation – in the early Proterozoic Transvaal Supergroup, South Africa. Precambr Res 47:99–139Google Scholar
  25. Beukes NJ, Kleyenstuber A, Nel C (1982) Volcanogenic-sedimentary cycles in the Kalahari Manganese Field. Abstr Sedimentology 82. Geol Soc S Afr 93–97Google Scholar
  26. Beukes NJ, Klein C (1992) Models for iron-formation deposition, in The Proterozoic biosphere: a multidisciplinary study. In: Schopf W, Klein C (eds) Cambridge University Press, pp 147–151Google Scholar
  27. Beukes NJ, Gutzmer J, Mukhopadhyay J (2002) The geology and genesis of high-grade hematite iron ore deposits. Austr Inst Min Metall Publ Ser 7/2002:23–29Google Scholar
  28. Beyene A, Abdelsalam MG (2005) The tectonics of the Afar depression: a review and synthesis. J Afr Earth Sci 41:41–59Google Scholar
  29. Bezrukov PL, Petelin VP, Skorjakova NS (1970) Mineral’ney resursy okeana. Tikhii Okean 2, Nauka, MoscowGoogle Scholar
  30. Bignell RD (1975) Timing, distribution and origin of submarine mineralisation in the Red Sea. Trans Inst Min Metall B84: B1–B6Google Scholar
  31. Bischoff JL (1969) Red Sea geothermal brine deposits: their mineralogy, chemistry and genesis. In Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea, Springer, Berlin, pp 368–401Google Scholar
  32. Björlykke A, Sangster DF (1981) An overview of sandstone lead deposits and their relation to red-bed copper and carbonate-hosted lead-zinc deposits. Econ Geol 75th Anniv Vol: 179–213Google Scholar
  33. Björlykke A, Thorpe RI (1982) The source of lead in the Osen sandstone lead deposit on the Baltic Shield. Econ Geol 77:430–440Google Scholar
  34. Boelema R, Hira H (1998) Pegmatite deposits. In: Wilson MGC, Anhaeusser CR (eds) The mineral resources of South Africa, 6th edn, Handbk 16, Council Geosci, pp 509–521Google Scholar
  35. Bohannon RG (1989) Style of extensional tectonism during rifting, Red Sea and Gulf of Aden. J Afr Earth Sci 8:589–602Google Scholar
  36. Bonatti E (1985) Punctiform initiation of seaflor spreading in the Red Sea during transition froma continental to an oceanic rift. Nature 316:33–37Google Scholar
  37. Bonatti E, Fisher DE, Joensuu O, Rydell HS, Beyth M (1972) Iron-manganese-barium deposit from the northern Afar rift (Ethiopia). Econ Geol 67:717–730Google Scholar
  38. Boni M, Terracciano R, Evans NJ, Laukamp C, Schneider J, Bechstädt T (2007) Genesis of vanadium ores in the Otavi Mountain Land, Namibia. Econ Geol 102:441–469Google Scholar
  39. Borg G (1988) The Koras-Sinclair-Ghanzi rift in southern Africa. Volcanism, sedimentation, age relationships and geophysical signature of a late middle Proterozoic riuft system. Precambr Res 38:75–90Google Scholar
  40. Borg G, Maiden KJ (1986) A preliminary appraisal of the tectonic and sedimentological environment of the Sinclair Sequence in the Klein Aub area, SWA/Namibia. Commun Geol Surv of SWA/Namibia 2:65–73Google Scholar
  41. Borg G, Maiden KJ (1987) Alteration of late Middle Proterozoic volcanics and its relation to stratabound copper-silver-gold mineralisation along the margin of the Kalahari Craton in SWA/ Namibia and Botswana. Geol Soc Spec Publ 33:347–354Google Scholar
  42. Borg G, Frotzscher M, Ehling B (2005) Metal content and spatial distribution of Au and PGE in the Kupferschiefer of the Mansfeld/Sangerrhausen mining district, Germany. In: Mao JW, Bierlein FP (eds) Mineral deposit research: meeting the global challenge, vol 2. Springer, Berlin, pp 885–888Google Scholar
  43. Botha BJV, Grobler NJ (1979) The geotectonic evolution of the middle to late Precambrian Namaqua Mobile Belt in eastern Namaqualand, South Africa. Precambr Res 10:33–41Google Scholar
  44. Botz R, Schmidt M, Wehner H, Hufnagel H, Stoffers P (2007) Organic-rich sediments in brine-filled Shaban and Kebrit deeps, northern Red Sea. Chem Geol, doi: 10.1016/j.chemgeo.2007.07.004Google Scholar
  45. Boyce AJ, Anderton R, Russell MJ (1983) Rapid subsidence and early Carboniferous base-metal mineralization in Ireland. Trans Inst Min Metall 92: B55–B66Google Scholar
  46. Boyce AJ, Little CTS, Russell MJ (2003) A new fossil vent biota in the Ballynoe barite deposit, Silvermines, Ireland: evidence for intracratonic sea-floor hydrothermal activity about 352 Ma. Econ Geol 98:649–656Google Scholar
  47. Bradley DC, Leach DL (2003) Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands. Mineral Depos 38:652–667Google Scholar
  48. Braile LW, Keller GR, Wendlandt RF, Khan MA (1995) The East African rift system. In: Olsen KH (ed) Continental rifts: evolution, structure, tectonics, Elsevier, Amsterdam, pp 213–232Google Scholar
  49. Brigo L, Omenetto P (1985) Lithogeochemical observations on some ore-bearing Triassic sequences of the Italian southern Alps. Monograph series on mineral deposits, vol 25. Bornträeger, Berlin, pp 95–194Google Scholar
  50. Brigo L, Camana, G, Rodeghiero F, Potenza R (2001) Carbonate-hosted siliceous crust type mineralization of Carnic Alps (Italy-Austria). Ore Geol Rev 17:199–214Google Scholar
  51. Broadbent GC, Myers RE, Wright JV (1998) Geology and origin of the shale hosted Zn-Pb-Ag mineralization at the Century deposit, northwest Queensland, Australia. Econ Geol 93:1264–1294Google Scholar
  52. Broadbent GC, Andrews SJ, Kelso IJ (2002) A decade of new ideas: geology and exploration history of the Century Zn-Pb-Ag deposity, northwestern Queensland, Australia. Soc Econ Geol Sp Publ 9:119–140Google Scholar
  53. Brown JS (ed) (1967) Genesis of stratiform lead-zinc-barite-fluorite deposits (Mississippi Valley type deposits). Soc Econ Geol Monogr 3Google Scholar
  54. Brown AC (1971) Zoning in the White Pine copper deposit, Michigan. Econ Geol 66:543–573Google Scholar
  55. Brown DA, Gross GA, Sawicki JA (1995) A review of the microbial geochemistry of banded iron-formations. Canad Mineral 33:1321–1333Google Scholar
  56. Burns RG, Burns VM (1979) Manganese oxides. In: Burns RG (ed) Marine Minerals. Mineral Soc Am Strat Course Notes 6, pp 1–46Google Scholar
  57. Busby CJ, Ingersoll RV (1995) Tectonics of sedimentary basins. In: Busby CJ, Ingersoll RV (eds) Tectonics of sedimentary basins, Blackwell Science, Oxford, pp 1–51Google Scholar
  58. Butuzova GYu (1998) Hydrothermal-sedimentary ore forming processes in the Red Sea rift zone. GEOS, MoscowGoogle Scholar
  59. Cairncross B (1997) The Otavi Mountain Land Cu-Pb-Zn-V deposits. Mineral Rec 28:109–137Google Scholar
  60. Cawood PA, Tyler IM (2004) Assembling and reactivating the Proterozoic Capricorn Orogen: lithotectonic elements, orogenies and significance. Precambr Res 128:201–218Google Scholar
  61. Chetty D, Frimmel HE (2000) The role of evaporites in the genesis of base metal sulphide mineralisation in the Northern Platform of the Pan-African Damara Belt, Nambia: geochemical and fluid inclusion evidence from carbonate wall rock alteration. Mineral Depos 35:364–376Google Scholar
  62. Clifford TN, Stumpfl EF, Burger AJ, McCarthy TS, Rex DC (1981) Mineral-chemical and isotopic studies of Namaqualand granulites, South Africa: a Grenville analogue. Contrib Mineral Petrol 77:225–250Google Scholar
  63. Cloud P (1973) Paleoecological significance of the banded iron formation. Econ Geol 68:1135–1143Google Scholar
  64. Cloud P (1976) Major features of crustal evolution. Trans Geol Soc S Afr LXXIX: 1–33Google Scholar
  65. Clout JMF, Simonson BM (2005) Preacambrian iron formations and iron formation-hosted iron ore deposits. Econ Geol 100th Anniv Vol: 643–649Google Scholar
  66. Condie KC (2001) Mantle plumes and their record in Earth history. University Press, CambridgeGoogle Scholar
  67. Cornell DH, Schütte SS (1995) A volcanic-exhalative origin for the world’s largest (Kalahari) manganese field. Mineral Depos 30:146–151Google Scholar
  68. Cornell DH, Thomas RJ, Moen HFG, Reid DL, Moore JM, Gibson RL (2006) The Namaqua-Natal province. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa, Geol Soc S Afr and Council Geoscie, Pretoria, pp 325–379Google Scholar
  69. Crocetti CA, Holland HD (1989) Sulphur-lead isotope systematics and the composition of fluid inclusions in galena from the ViburnumTrend, Missouri. Econ Geol 84:2196–2216Google Scholar
  70. De Waele B, Liégeois JP, Nemchin A, Tembo F (2006) Isotopic and geochemical evidence of Proterozoic episodic crustal reworking within the Irumide belt of south-central Africa, the southern metacratonic boubdary of an Archaean Bangweulu Craton. Precambr Res 148:225–256Google Scholar
  71. Dean WE (1983) Geochemistry of deep-sea manganese nodules-organic involvement. In:Shanks WC (ed) Cameron volume unconventional mineral deposits, AIME, New York, pp 123–132Google Scholar
  72. Deb M, Goodfellow WD (eds) (2004) Sediment hosted lead-zinc sulphide deposits: attributes and models of some major deposits in India, Australia and Canada. Narosa Publ House, New DelhiGoogle Scholar
  73. Degens ET, Kulbicki G (1973) Hydrothermal origin of metals in some East African rift lakes. Mineral Depos 8:388–404Google Scholar
  74. Degens ET, Ross DA (1976) Strata-bound metalliferous deposits found in or near active rifts. In: Wolf KH (ed) Handbook of strata-bound and stratiform ore deposits, vol 9. Elsevier, Amsterdam, pp 165–202Google Scholar
  75. de Ronde CEJ, de Wit MJ, Spooner ETC (1994) Early Archaean (>3.2 Ga) Fe-oxide-rich, hydrothermal discharge vents in the Barberton greenstone belt, South Africa. Geol Soc Am Bull 106:86–104Google Scholar
  76. Direen NG, Crawford AJ (2003) The Tasman Line: where it is, what it is, and is it Australia's Rodinian breakup boundary? Aust J Earth Sci 50:491–502Google Scholar
  77. Doe RB, Delevaux MA (1972) Source of lead in southeast Missouri galena ores. Econ Geol 67:405–425Google Scholar
  78. Dondi M, Puggioli G. (1992). La mine de Raibl, Cave del Predil (UD) – 2° partie. Rivista Mineral Ital 3:153–166Google Scholar
  79. Dörling SL, Dentith MC, Groves DI, Vearncombe JR (1996) Mississippi Valley-type deposits of the southeast Lennard Shelf: an example of the interplay of extensional deformation, sedimentation and mineralization. Soc Econ Geol Sp Publ 4:96–111Google Scholar
  80. Dörling SL, Groves DI, Muhling P (1998) Lennard Shelf Mississippi Valley-type (MVT) deposits, Western Australia. AGSO J Geol & Geophys 17:115–120Google Scholar
  81. Dymond J, Roth S (1988) Plume dispersed hydrothermal particles: A time-series record of settling flux from the Endeavour Ridge, using moored sensors. Gechim Comsochim ACta 52:2525–2536Google Scholar
  82. Ebinger CJ, Sleep NH (1998) Cenozoic magmatism throughout east Africa resulting from the impact of a single plume. Nature 395:788–791Google Scholar
  83. Ebinger CJ, Yemane T, Harding DJ, Tesfaye S, Kelley S, Rex DC (2000) Rift deflection, migration and propagation: Linkage of the Ethiopian and eastern rifts, Africa. Geol Soc Am Bull 112:163–176Google Scholar
  84. Edgerton D (1997) Reconstruction of the Red Dog Zn-Pb-Ba orebody, Alaska: implications for the vent environment during the mineralizing event. Can J Earth Sci 34:1581–1602Google Scholar
  85. Eglington BM (2006) Evolution of the Namaqua-Natal Belt, southern Africa – A geochronological and isotope geochemical review: J Afr Earth Sci 46:93–111Google Scholar
  86. Einsele G (2000) Sedimentary basins – evolution, facies and sediment budget. Springer, BerlinGoogle Scholar
  87. Eisenlhor BN, Tompkins LA, Cathles LM, Barley ME, Groves DI (1994) Mississippi Valley-type deposits: Products of brine expulsion by eustatically induced hydrocarbon generation? An example from northwestern Australia. Geology 22:315–318Google Scholar
  88. Erikson PG, Martins-Neto MA, Nelson DR, Aspoler LB, Chiarenzelli JR, Catuneau O, Sarkar S, Altermann W, Rautenbach CJW (2001) An introduction to Precambrian basins: their characteristics and genesis. Sedimen Geol 141–142:1–35Google Scholar
  89. Ernst RE, Buchan K (2003) Recognising mantle plumes in the geological record. Ann Rev Earth Planet 31:469–523Google Scholar
  90. Esteban M, Klappa CF (1983) Subaerial exposure. Mem Am Assoc Petroleum Geol 33:1–54Google Scholar
  91. Eugster HP (1986) Lake Magadi Kenya: a model for rift valley hydrochemistry and sedimentation? Geol Soc, Lond, Spec Publ 25: 177–190Google Scholar
  92. Eugster HP (1986) Lake Magadi Kenya: a model for rift valley hydrochemistry and sedimentation? Geol Soc Sp Publ 25:177–190Google Scholar
  93. Fleischer VD, Garlick WS, Haldane R (1976) Geology of the Zambian Copper Belt. In: Wolf KH (ed) Handbook of stratabound and stratiform ore deposits, vol 6. Elsevier, Amsterdam, pp 223–352Google Scholar
  94. Force ER, Cannon WF (1988) Depositional model for shallow-marine manganese deposits around black shale basins. Econ Geol 83:93–117Google Scholar
  95. Force ER, Maynard JB (1991) Manganese: Syngenetic deposits on the margins of anoxic basins. Rev Econ Geol 9:147–157Google Scholar
  96. Foster DRW, Austin JR (2007) The 1800 to 1610 Ma stratigraphic and magmatic history of the Eastern Succession, Mount Isa Inlier, and correlations with adjacent Palaeoproterozoic terranes. Precamb Res doi: 10.1016/j.precamres.2007.08.010Google Scholar
  97. Francois LM (1986) Extensive deposition of banded iron formations was possible without photosynthesis. Nature 320:352–354Google Scholar
  98. Frakes L, Bolton B (1984) Origin of manganese giants: sea level changes and anoxic-oxic history. Geology 12:83–86Google Scholar
  99. Frimmel HE, Deane JG, Chadwick PJ (1996) Pan-African tectonism and the genesis of base metal sulfide deposits in the northern foreland of the Damara orogen, Namibia. Soc Econ Geol Sp Publ 4:204–217Google Scholar
  100. Frakes L, Bolton B (eds) (1992) A special issue devoted to advances in Manganese metallogenesis. Econ Geol 87(5)Google Scholar
  101. Frostick LE, Renaut RW Reid I, Tiercelin JJ (eds) (1986) Sedimentation in the African rifts. Geol Soc, London, Sp Publ 25Google Scholar
  102. Fyfe WS, Price NJ, Thompson AB (1978) Fluids in the Earth's crust. Elsevier, AmsterdamGoogle Scholar
  103. Garlick WS (1961) The syngenetic theory. In: Mendelsohn F (ed) The geology of the Northern Rhodesian Copperbelt, Macdonald, London, pp 146–165Google Scholar
  104. Garlick WS (1989) Mineralization controls and source of metals in the Lufillian Fold Belt, Shaba (Zaire), Zambia and Angola. Econ Geol 84:966–968Google Scholar
  105. Garven G, Raffensperger JP (1997) Hydrogeology and geochemistry of ore genesis in sedimentary basins. In: Barnes HL (ed) Geochemistry of ore deposits, 3rd edn. John Wiley & Sons, New York, pp 125–189Google Scholar
  106. Geringer GJ, Pretorius JJ, Cilliers FH (1987) Strata-bound copper-iron sulphide mineralization in a Proterozoic front arc setting at Boksputs, Borthwest Cape, South Africa – a possible Besshi-type deposit. Mineral Depos 22:81–89Google Scholar
  107. Ghebread W (1998) Tectonics of the Red Sea region. Earth-Sci Rev 45:1–44Google Scholar
  108. Gibson RL, Kisters AFM (eds) (1996) Special issue on the geology of the Okiep copper district. S Afr J Geol 99(2)Google Scholar
  109. Gibson GM, Peljo M, Chamberlain T (2004) Evidence and timing of crustal extension versus shortening in the early tectonothermal evolution of a Proterozoic continental rift sequence at Broken Hill, Australia. Tectonics 23:TC5012, doi: 10.1029/2003TC001552Google Scholar
  110. Giles CW (1988) Petrogenesis of the Proterozoic Gawler Range Volcanics, South Australia. Precambr Res 40/41:407–427Google Scholar
  111. Giles D, Betts PG, Lister GS (2004) 1.8-1.5 Ga links between the North and South Australian Cratons and the early-Middle Proterozoic configuration of Australia. Tectonophysics 380:27–41Google Scholar
  112. Glasby GP (1976) Manganese nodules in the South Pacific: a review. New Zeal J Geol & Geophys 19:707–736Google Scholar
  113. Glasby GP (2000) Manganese: predominant role of nodules and crusts. In: Schulz HD, Zabel M (eds) Marine geochemistry, Springer, New York, pp 771–790Google Scholar
  114. Glass LM, Phillips D (2006) The Kalkarindji continental flood basalt province in Australia with possible links to faunal extinctions. Geology 34:461–464Google Scholar
  115. Glikson A (2006) Asteroid impact ejecta units overlain by iron-rich sediments in 3.5-3.2 Ga terrains, Pilbara and Kaapvaal cratons: accidental or cause-effect relationships? Earth Planet Sci Lett 246:149–160Google Scholar
  116. Goodfellow WD, Lydon JW, Turner RJW (1993) Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphide deposits. Geol Ass Canada Sp Pap 40:201–252Google Scholar
  117. Goodfellow WD, Lydon JW (2007) Sedimentary exhalative (SEDEX) deposits. Geol Ass Canada Sp Publ 5:163–183Google Scholar
  118. Graham IJ, Wright IC (2007) The Campbell ferromanganese nodule field in the southern part of New Zealand’s exclusive economic zone. Aust Inst Min Metall Monogr 25:339–347Google Scholar
  119. Grip E (1966) On the genesis of the lead ores of the eastern border of the Caledonides in Scandinavia. Soc Econ Geol Monogr 3:208–226Google Scholar
  120. Groves DI, Vielreicher RM, Goldfarb RJ, Condie KC (2005) Controls on the heterogeneous distribution of mineral deposits through time. Geol Soc Lond Sp Publ 248:71–101Google Scholar
  121. Grundmann WH (1977) Geology of the Viburnum No. 27 mine, Viburnum Trend, southeast Missouri. Econ Geol 72:349–364Google Scholar
  122. Gurvich EG (2006) Metalliferous sediments of the world ocean. Springer, BerlinGoogle Scholar
  123. Hanor JS (1979) The sedimentary genesis of hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. John Wiley & Sons, New York, pp 137–172Google Scholar
  124. Hanor JS (1994) Origin of saline fluids in sedimentary basins. Geol Soc, Lond, Sp Publ 78:151–174Google Scholar
  125. Hartnady CJH, Joubert P, Stowe CW (1985). Proterozoic crustal evolution in southwestern Africa. Episodes 8:236–244Google Scholar
  126. Hearn PP, Sutter JF, Belkin HE (1987) Evidence for Late-Palaeozoic brine migration in Cambrian carbonate rocks of the central and southern Apalachians: Implications for Mississippi Valley-type sulfide mineralization. Geochim Cosmochim Acta 51:1323–1334Google Scholar
  127. Hein JR, Koscjinsky A, Halbach P, Manheim FT, Bau M, Kamg JK, Lubick N (1997) Iron and manganese oxide mineralization in the Pacific. Geol Soc London Sp Publ 119:23–138Google Scholar
  128. Hitzman MW, Beaty DW (1996) The Irish Zn-Pb-(Ba) orefield. Soc Econ Geol Sp Publ 4:112–143Google Scholar
  129. Hitzman MW, Kirkham R, Broughton D, Thorson J, Selley D (2005) The sediment-hosted stratiform copper ore system. Econ Geol 100th Ann Iss: 609–642Google Scholar
  130. Hoefs J (2004) Stable isotope geochemistry. 5th edn. Springer, BerlinGoogle Scholar
  131. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball Earth. Science 281:1342–1346Google Scholar
  132. Holland HD (2002) Volcanic gases, black smokers and the Great Oxidation Event. Geochim Cosmochim Acta 66:3811–3826Google Scholar
  133. Holm NG (1989) The 13C/12C ratios of siderite and organic matter of a modern metalliferous sediment and their implications for banded iron formations. Chem Geol 77:41–45Google Scholar
  134. Hughes MJ (1987) The Tsumeb ore body, Namibia, and related dolostone-hosted base metal deposits of Central Africa. Univ Witwatersrand, Johannesburg, unpubl PhD thesisGoogle Scholar
  135. Hulen JB, Collister JW (1999) The oil-bearing Carlin-type gold deposits of Yankee Basin, Alligator Ridge district, Nevada. Econ Geol 94:1029–1050Google Scholar
  136. Huston DL, Stevens B, Southgate PN, Muhling P, Wyborn L (2006) Australian Zn-Pb-Ag ore-forming systems: a review and analysis. Econ Geol 101:1117–1157Google Scholar
  137. Innes J, Chaplin RC (1986) Ore bodies of the Kombat Mine, South West Africa/Namibia. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, vol 2. Geol Soc S Afr, pp 1789–1805Google Scholar
  138. Ireland T, Large RR, McGoldrich P, Blake M (2004) Spatial distribution patterns of sulphur isotopes, nodular carbonate and ore textures in the McArthur River (HYC) Zn-Pb-Ag deposit, Northern Territory, Australia. Econ Geol 99:1687–1710Google Scholar
  139. Isley AE (1995) Hydrothermal plumes and the delivery of iron to banded iron formation. J Geol 103:169–185Google Scholar
  140. Isley AE, Abbott DH (1999) Plume-related mafic volcanism and the deposition of banded iron formation. J Geophys Res 104:15461–15477Google Scholar
  141. James HL (1954) Sedimentary facies of iron formation. Econ Geol 49:235–293Google Scholar
  142. Jaques AL, Jaireth S, Walshe JL (2002) Mineral systems of Australia: an overview of resources, settings and processes. Aus J Earth Sci 49:623–660Google Scholar
  143. Jiang SY, Palmer MR, Ding TP, Wan DF (1994) Silicon isotope geochemistry of the Sullivan Pb-Zn deposit, Canada: a preliminary study. Econ Geol 89:1623–1629Google Scholar
  144. Jiang SY, Palmer MR, Slack JF, Shaw DR (1998) Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia. Econ Geol 93:47–67Google Scholar
  145. Johnson CM, Beard BL, Klein C, Beukes NJ, Riden EE (2007) Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim Cosmochim Acta 10.1016/j.gca.2007.10.013Google Scholar
  146. Joubert P (1986a) The namaqualand metamorphic complex. In: Hunter DR (ed) Precambrian of the southern hemisphere developments in precambrian geology 2, Elsevier, Amsterdam; pp 671–705Google Scholar
  147. Joubert P (1986b) The namaqualand metamorphic complex. A summary. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa II. Geol Soc S Afr, pp 1395–1420Google Scholar
  148. Jowett EC (1986) Genesis of Kupferschiefer Cu-Ag deposits by convective flow of Rotliegende brines during Triassic rifting. Econ Geol 81:1823–1837Google Scholar
  149. Kamona AF, Lévêque J, Fridrich G, Haack U (1999) Lead isotopes of the carbonate-hosted Kabwe, Tsumebr, and Kipushi Pb-Zn-Cu sulphide deposits in relation to Pan African orogenesis in the Damaran-Lufillian fold belt of central Africa. Mineral Depos 34:273–283Google Scholar
  150. Kampunzu AB, Lubala RT (eds) (1991) Magmatism in extensional structural settings – the Phanerozoic African plate. Springer-Verlag, BerlinGoogle Scholar
  151. Kappler A, Pasquero C, Konhauser KO, Newman DK (2005) Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33:865–868Google Scholar
  152. Kelley KD, Jennings S (2004) Special issue devoted to barite and Zn-Pb-Ag deposits in the Red Dog district, Brooks Range, Alaska. Econ Geol 99:1267–1280Google Scholar
  153. Kennard JM, Jackson MJ, Romine KK, Shaw RD, Southgate PN (1994) Depositional sequences and associated petroleum systems of the Canning Basin, WA. In: Purcell PG, Purcell RR (eds) The sedimentary basins of Western Australia, Proceed Petr Expl Soc Aus, Symp, pp 657–676Google Scholar
  154. Keranen K, Klemperer, SL (2007) Discontinuous and diachronous evolution of the Main Ethiopian Rift: implications for development of continental rifts. Earth Planet Sci Lett doi: 10.1016/j.epsl.2007.09.038Google Scholar
  155. Kesler SE, Reich M, Jean M (2007) Geochemistry of fluid inclusion brined from Earth's oldest Mississippi Valley-type (MVT) deposits, Transvaal Supergroup, South Africa. Chem Geol 237:274–288Google Scholar
  156. Kimbel WH (1995) Hominid speciation and Pliocene climate change. In: Vrba ES, Denton GH, Partridge DC, Burckel LH (eds) Palaeoclimate and evolution with emphasis on human origins. Yale University Press, New Haven, pp 425–437Google Scholar
  157. Kimberley MM (1989a) Nomenclature for iron formations. Ore Geol Rev 5:1–12Google Scholar
  158. Kimberley MM (1989b) Exhalative origins of iron formations. Ore Geol Rev 5:13–145Google Scholar
  159. Klein C, Beukes NJ (1992) Proterozoic iron-formations. In: Condie KC (ed) Proterozoic crustal evolution, Elsevier, Amsterdam, pp 383–418Google Scholar
  160. Konhauser KO, Hamade T, Raiswell R, Ferris FG, Southam G, Canfield DE (2002) Could bacteria have formed the Precambrian banded iron formations? Geology 30:1079–1082Google Scholar
  161. Konhauser KO, Newman DK, Kappler A (2005) The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formation. Geobiol 3:167–177Google Scholar
  162. Konhauser KO, Amskold L, Lalonde SV, POsth NR, Kappler A, Anbar A (2007) Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet Sci Lett 258:87–100Google Scholar
  163. Krapež B, Barley ME, Pickard AL (2003) Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from Early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology 50:979–1011Google Scholar
  164. Kröner A (1978) The Namaqua Mobile Belt within the framework of Precambrian Crustal evolution in Southern Africa. Geol Soc S Afr Specl Publ. 4:181–188Google Scholar
  165. Kucha H, Van der Biest J, Viaene NA (1990) Peloids in strata-bound Zn-Pb deposits and their genetic importance. Mineral Depos 25:132–139Google Scholar
  166. Kyle JR, Li N (2002) Jinding: A giant Tertiary sandstone-hosted Zn-Pb deposit, Yunnan, China. SEG Newslett 50:1–16Google Scholar
  167. Lambiase JJ (1989) The framework of African rifting during the Phanerozoic. J Afr Earth Sci 8:183–190Google Scholar
  168. Lambiase JJ (1990) A model for tectonic control of lacustrine stratigraphic sequences in continental rift basins. Am Ass Pet Geols Mem 50:265–276Google Scholar
  169. Large DE (1981) Sediment-hosted submarine exhalative lead-zinc deposits-A review of their geological characteristics and genesis. In: Wolf KH (ed) Handbook of stratabound and stratiform ore deposits, vol 9. Elsevier, Amsterdam, pp 469–507Google Scholar
  170. Large D, Walcher E (1999) The Rammelsberg massive sulphide Cu-Zn-Pb-Ba deposit, Germany: an example of sediment-hosted massive sulphide mineralization. Mineral Depos 34:522–538Google Scholar
  171. Large RR, Bull SW, Cooke DR, McGoldrick PJ (1998) A genetic model for the HYC deposit, Australia, based on regional sedimentology, geochemistry, and sulfide-sediment relationship. Econ Geol 93:1345–1569Google Scholar
  172. Large RR, Bull S, McGoldrick PJ, Waters S, Derrick GM, Carr GR (2005) Stratiform and stratabound Zn-Pb-Ag deposits in Proterozoic sedimentary basins, northern Australia. Econ Geol 100th Anniv Vol: 931–963Google Scholar
  173. Larin AM, Mikhailov DA (1997) Olyokma Terrain. In: Rundqvist DV, Gillen C (eds) Precambrian ore deposits of the East European and Siberian cratons, Devel Econ Geol, Elsevier, pp 211–225Google Scholar
  174. Larter RCL, Boyce AJ, Russell MJ (1981) Hydrothermal pyrite chimneys from the Ballynoe baryte deposit, Silvermines, County Tipperary, Ireland. Mineral Depos 16:309–318Google Scholar
  175. Lascelles DF (2007). Black smokers and density currents: a uniformitarian model for the genesis of banded iron-formations. Ore Geol Rev 32:381–411Google Scholar
  176. Laznicka P (2006) Giant metallic deposits – Future sources of industrial metals. Springer, BerlinGoogle Scholar
  177. Leach DL, Plumlee GS, Hofstra AH, Landis GP, Rowan EL, Viets JG (1991) Origin of late dolomite cement by CO2-saturated deep basin brines: evidence from the Ozark region, central United States. Geology 19:348–351Google Scholar
  178. Leach DL, Sangster DF (1993) Mississippi valley-type lead-zinc deposits. Geol Ass Can Sp Pap 40:289–314Google Scholar
  179. Leach DL, Bradley DC, Lewchuk M, Symons DTA, Brannon J de Marsily G (2001) Mississippi Valley-type lead-zinc deposits through geological time: inplications from recent age-dating research. Mineral Depos 36:711–740Google Scholar
  180. Leach DL, Marsh E, Emsbo P, Rombach C, Kelley KD, Reynolds J, Anthony M (2004) Nature of hydrothermal fluids at the shale-hosted Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska. Econ Geol 99:1449–1480Google Scholar
  181. Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J, Walters S (2005) Sediment-hosted lead-zinc deposits: A global perspective. Econ Geol 100th Ann Iss: 561–607Google Scholar
  182. Leeder M (1999) Sedimentology and sedimentary basins – from turbulence to tectonics. Blackwell Science, OxfordGoogle Scholar
  183. Logan GA, Hinman MC, Walter MR, Summons RE (2001) Biogeochemistry of the 1640 Ma McArthur River (HYC) lead-zinc ore and host sediments, Northern Territory, Australia. Geochim Cosmochim Acta 65:2317–2336Google Scholar
  184. Lombaard AF, Gunzel A, Innes J, Kruger TL (1986) The Tsumeb lead-copper-zinc-silver deposit, South West Africa/Namibia. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, vol 2. Geol Soc S Afr, pp 1761–1787Google Scholar
  185. Lupton JE (1995) Hydrothermal plumes: near and far field. Am Geophys Union Monogr 91:317–346Google Scholar
  186. Lydon JW (2004) Genetic models for Sullivan and other SEDEX deposits. In: Deb M, Goodfellow WD (eds) Sediment hosted lead-zinc sulphide deposits: attributes and models of some major deposits in India, Australia and Canada. Narosa Publ House, New Delhi, pp 149–190Google Scholar
  187. Lydon JW (2007) Geology and metallogeny of the Belt-Purcell Basin. Geol Ass Canada Sp Publ 5:581–607Google Scholar
  188. Maiden K, Hughes M (2000) Mount Isa and Tsumeb: a comparative metallogenic study. Commun Geol Surv Namibia 12:167–177Google Scholar
  189. Marinelli G (1971) La province géothermique de la dépression Danakil. Annales Mines 12:123–133Google Scholar
  190. Marmont S (1987) Ore deposit models #13. Unconformity-type uranium deposits. Geosci Can 14:219–229Google Scholar
  191. Martin DMcB, Li ZX, Nemchin AA, Powell CMcA (1998) A pre-2.2 Ga age for giant hematite ores of the Hamersley Province, Australia. Econ Geol 93:1084–1090Google Scholar
  192. Matthews PE (1976) Possible Precambrian obduction and plate tectonics in South Eastern Africa. Nature 240:37–39Google Scholar
  193. McClung CR, Gutzmer J, Beukes NJ, Mezger K, Strauss H, Gertloff E (2007) Geochemistry of bedded barite of the Mesoproterozoic Aggeneys-Gamsberg Broken hill-type district, South Africa. Mineral Depos 42:537–549Google Scholar
  194. McConnell RB (1972) Geological development of the rift system of Eastern Africa. Geol Soc Am Bull 83:2549–2572Google Scholar
  195. McGregor GJ (1986) Geology of the Black Mountain ore body- Aggeneys. In: Abstr Geocongress '86 Johannesburg. Geol Soc S Afr, pp 1025–1028Google Scholar
  196. Mendelsohn F (ed) (1961) The geology of the Northern Rhodesian Copperbelt. MacDonald, LondonGoogle Scholar
  197. Metcalfe R, Rochelle CA, Savage D, Higgo JW (1994) Fluid-rock interactions during continental red bed diagenesis: implications for theoretical models of mineralisation in sedimentary basins. Geol Soc Lond Sp Publ 78:301–324Google Scholar
  198. Miller RMcG (1983) The Pan-African damara orogen of South-West Africa/Namibia. Geol Soc S Afr Sp Publ 11:431–515Google Scholar
  199. Misiewicz JE (1988) The geology and metallogeny of the Otavi Mountain Land, Damara Orogen, SWA/Namibia, with particular reference to the Berg Aukas Zn-Pb-V deposit – A model of ore genesis. MSc Thesis, Rhodes University, GrahamstownGoogle Scholar
  200. Mohr P (1978) Afar. Ann Rev Earth Planet Sci 6:145–172Google Scholar
  201. Moore JM (1980) A study of certain paragneiss associations and their metallogenic characteristics in Namaqualand and Bushmanland. Ann Rep Precambr Res Unit, Univ Cape Town 17:65–73Google Scholar
  202. Moore JM (1989) A comparative study of metamorphosed supracrustal rocks from the Western Namaqualand Metamorphic Complex. Precambr Res Unit, Dept Geol, Univ Cape Town, Bull 37Google Scholar
  203. Morris RC (1985) Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic process – a conceptual model. In: Wolf KH (ed) Handbook stratabound and stratiform ore deposits 13, Elsevier, pp 73–235Google Scholar
  204. Morris RC (1993) Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambr Res 60:243–286Google Scholar
  205. Morris RC (1998) BIF-hosted iron ore deposits – Hamersley style. AGSO J Aust Geol & Geophys 17:207–211Google Scholar
  206. Mouat MM, Clendenin CW (1977) Geology of the Ozark Lead Company mine, Viburnum Trend, Southeast Missouri. Econ Geol 72:398––407Google Scholar
  207. Mukhopadhyay R, Iyer SD, Ghosh AK (2002) The Indian Ocean nodule field: petrotectonic evolution and ferromanganese deposits. Earth-Sci Rev 60:67–130Google Scholar
  208. Müller G, Förstner U (1973) Recent iron formation in Lake Malawi, Africa. Mineral Depos 8:278–290Google Scholar
  209. Myers JS, Shaw RD, Tyler IM (1996) Tectonic evolution of Proterozoic Australia. Tectonics 15-6:1431–1446Google Scholar
  210. Ohle EL (1985) Breccias in Mississippi Vally-type deposits. Econ Geol 80:1736–1752Google Scholar
  211. Oliver J (1986) Fluids expelled tectonically from orogenic belts: their role in hydrocarbon migration and other geological phenomena. Geology 14:99–102Google Scholar
  212. Olivo GR, Gauthier M, Bardoux M, De Sa EL, Fonseca JTF, Carbonari Santana F (1995) Palladium-bearing gold deposit hosted by Proterozoic Lake Superior-type iron-formation at the Cauê iron mine, Itabira district, southern San Francisco Craton, Brazil: geologic and structural controls. Econ Geol 90:118–134Google Scholar
  213. Olsen KH (ed) (1995) Continental rifts: evolution, structure, tectonics. Devlpmt Geotect, Elsevier, AmsterdamGoogle Scholar
  214. Ostwald J, Bolton BR (1992) Glauconite formation as a factor in sedimentary manganese deposit genesis. Econ Geol 87:1336–1344Google Scholar
  215. Page RW, Stevens BPJ, Gibson GM (2005) Geochronology of the sequence hosting the Broken Hill Pb-Zn-Ag orebody. Econ Geol 100:633–661Google Scholar
  216. Painter MGM, Golding SXD, Hannan KW, Neudert MK (1999) Sedimentologic, petrographic, and sulfur isotope constraints on fine-grained pyrite formation at Mount Isa mine and environs, northwest Queensland, Australia. Econ Geol 94:883–912Google Scholar
  217. Parnell J (ed) (1994) Geofluids: origin, migration and evolution of fluids in sedimentary basins. Geol Soc Lond Sp Publ 78Google Scholar
  218. Parr JM, Plimer IR (1993) Models for Broken Hill-type lead-zinc-silver deposits. Geol Ass Can Sp Pap 40:253–288Google Scholar
  219. Peace WM, Wallace MW (2000) Timing of mineralization at the Navan Zn-Pb deposit: A post-Arundian age for Irish mineralization. Geology 28:711–714Google Scholar
  220. Person M, Garven G (1994) A sensitivity study of the driving forces on fluid flow during continental-rift basin evolution. Geol Soc Am Bull 106:461–475Google Scholar
  221. Pflumio C, Boulègue J, Tiercelin JJ (1994) Hydrothermal activity in the northern Tanganyika rift, East Africa. Chem Geol 116:85–109Google Scholar
  222. Pickard AL (2003) SHRIMP U-Pb zircon ages for the Palaeoproterozoic Kuruman iron formation, Northern Cape Province, South Africa: evidence for simultaneous BIF deposition on Kaapvaal and Pilbara Cratons. Precambr Res 125:275–315Google Scholar
  223. Pierret MC, Clauer N, Bosch D, Blanc G, France-Lanord C (2001) Chemical and isotopic (87Sr/86Sr, δ18O, δD) constraints to the formation of Red Sea brines. Geochim Cosmochim Acta 65:1259–1275Google Scholar
  224. Pirajno F (1992) Hydrothermal ore deposits – Principles and fundamental concepts for the exploration geologist. Springer-Verlag, BerlinGoogle Scholar
  225. Pirajno F (2000) Ore deposits and mantle plumes. Kluwer Academic Publ., DordrechtGoogle Scholar
  226. Pirajno F (2004) Metallogeny in the Capricorn Orogen, Western Australia, the result of multiple ore-forming processes. Precambr Res 128:411–439Google Scholar
  227. Pirajno F (2007a) Mantle plumes, associated intraplate tectono-magmatic processes and ore systems. Episodes 30:6–19Google Scholar
  228. Pirajno F (2007b) Ancient to modern Earth: the role of mantle plumes in the making of continental crust. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, Dev Precambr Geol 15, Elsevier, Amsterdam, pp 1037–1064Google Scholar
  229. Pirajno F, Joubert BD (1993) An overview of carbonate-hosted mineral deposits in the Otavi Mountain Land, Namibia: implications for ore genesis. J Afr Earth Sci 16:265–272Google Scholar
  230. Pirajno F, Bagas L (2008) A review of Australia's Proterozoic mineral systems and genetic models. Precambr Res, doi:10.1016/j.precamres.2007.05.008Google Scholar
  231. Pirajno F, Grey K (2002) Chert in the palaeoproterozoic bartle member, killara formation, Yerrida Basin, Western Australia: a rift-related playa lake and thermal spring environment? Precambr Res 113:169–192Google Scholar
  232. Pirajno F, Jones JA, Hocking RM, Halilovic J (2004) Geology and tectonic evolution of Palaeoproterozoic basins of the eastern Capricorn Orogen, Western Australia. Precambr Res 128:315–342Google Scholar
  233. Pirajno F, Hocking RM, Reddy S, Jones AJ (submitted) The geology and mineral systems of the Earaheedy Basin, Western Australia. Geol Surv West Aust Rpt and Earth Sci RevGoogle Scholar
  234. Playford PE (1980) Devonian “Great Barrier reef” of Canning Basin, Western Australia. Am Ass Petr Geol Bull 64:814–840Google Scholar
  235. Playford PE (1984) Platform margin and margina-slope relationships in Devonian Reef complexes of the Canning Basin. Geolo Soc Aus-Petr Expl Soc Aus Symp, Proceed, pp 191–214Google Scholar
  236. Playford PE, Cockbain AE (1992) Devonian reef complexes of the Canning Basin, Western Australia. Petr Expl Ass Aus and Am Ass Petr Geol Field Trip Guidebk 1Google Scholar
  237. Playford PE (2002) Palaeokarst, pseudokarst, and sequence stratigraphy in Devonian reef complexes of the Canning Basin, Western Australia. In: Keep M, Moss J (eds) The sedimentary basins of Western Australia 3, Proceed Petrol Expl Soc Aust Symp, Perth, Western Australia, pp 763–793Google Scholar
  238. Playford PE, Wallace M (2001) Exhalative mineralization in Devonian reef complexes of the Canning Basin, Western Australia. Econ Geol 96:1595–1610Google Scholar
  239. Plimer IR (1979) Sulphide rock zonation and hydrothermal alteration at Broken Hill, Australia. Inst Min Metall Trans 88: B161–B176Google Scholar
  240. Plimer IR (1986) Sediment-hosted exhalative Pb-Zn deposits; products of contrasting ensialic rifting. Trans Geol Soc S Afr 89:57–73Google Scholar
  241. Plimer IR (2006) Manganoan garnet rocks associated with the Broken Hill Pb-Zn-Ag orebody, Australia. Mineral Petrol 88:443–478Google Scholar
  242. Pohl W (2006) Metallogeny of the northeastern Kibaran belt, Central Africa. Geol J 22:103–119Google Scholar
  243. Polito PA, Kyser TK, Southgate PN, Jackson MJ (2006) Sandstone diagenesis in the Mount Isa basin: an isotopic and fluid inclusion perspective in relationship to district-wide Zn, Pb and Cu mineralization. Econ Geol 101:1159–1188Google Scholar
  244. Porada H (1979) The Damara-Ribeira orogen of the Pan-African Brasiliano cycle in Namibia (Southwest Africa) and Brazil as interpreted in terms of continental collision. Tectonophysics 57:237–265Google Scholar
  245. Porada H (1989) Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil. PrecambrRes 44:103–136Google Scholar
  246. Pottorf RJ, Barnes HL (1983) Mineralogy, geochemistry and ore genesis of hydrothermal sediments from the Atlantis II Deep, Red Sea. Econ Geol Monogr 5:198–223Google Scholar
  247. Powell McA, Oliver NHS, Li ZX, Martin D McB, Ronaszeki J (1999) Synorogenic hydrothermal origin for giant Hamersley iron oxide ore bodies. Geology 27:175–178Google Scholar
  248. Qiu HN, Zhu BQ, Sun DZ (2002) Age significance interpreted from 40Ar/39Ar dating of quartz samples from the Dongchuan copper deposits, Yunnan, SW China, by crushing and heating. Geochem J 36:475–491Google Scholar
  249. Ran CY (1989) Dongchuan-type stratabound copper deposits, China: a genetic model. Geol Ass Can Sp Pap 36:667–678Google Scholar
  250. Redfield TF, Wheeler WH, Often M (2003) A kinematic model for the development of the Afar Depression and its palaeogeographic implications. Earth Planet Sci Lett 216:383–398Google Scholar
  251. Reed KE (1997) Early hominid evolution and ecological change through the African Plio-Pleistocene period. J Human Evol 32:289–322Google Scholar
  252. Renaut RW, Tiercelin JJ, Owen RB (1986) Mineral precipitation and diagenesis in the sediments of Lake Bogoria basin, Kenya rift valley. Geol Soc London, Sp Publ 25:159–176Google Scholar
  253. Renaut RW, Jones B, Tiercelin JJ, Tarits C (2002) Sublacustrine precipitation of hydrothermal silica in rift lakes: evidence from Lake Baringo, central Kenya Rift Valley. Sed Geol 148:235–257Google Scholar
  254. Renfro AR (1974) Genesis of evaporite-associated stratiform metalliferous deposits – a sabkha prccess. Econ Geol 15:362–366Google Scholar
  255. Rickard DT, Wilden MY, Marinder NE, Donnelly TH (1979) Studies on the genesis of the Laisvall sandstone lead-zinc deposit, Sweden. Econ Geol 74:1255–1285Google Scholar
  256. Ridley M (1999) Evidence for the hydrothermal origin of iron ore, Southern Ridge, Mt Tom Price, Western Australia. Univ West Australia, BSc Hon thesis (unpublished)Google Scholar
  257. Robb L (2005) Introduction to ore-forming processes. Blackwell Publ, OxfordGoogle Scholar
  258. Robbins IE (1983) Accumulation of fossil fuels and metallic minerals in active and ancient rift lakes. Tectonophysics 94:633–658Google Scholar
  259. Robertson DS, Tisley JE, Hogg GM (1978) The time-bound character of uranium deposits. Econ Geol 73:1409–1419Google Scholar
  260. Rogers NW (2006) Basaltic magmatism and the geodynamics of the East African Rift System. Geol Soc London, Sp Publ 259:77–93Google Scholar
  261. Rogers NW, Macdonald R, Fitton JG, George R, Smith M, Barreiro B (2000) Two mantle plumes beneath the East African rift system: Sr, Nd and Pb isotope evidence from Kenya rift basalts. Earth Planet Sci Lett 176:387–400Google Scholar
  262. Rosendahl BR (1987) Architecture of continental rifts with special reference to East Africa. Ann Rev Earth Planet Sci 15:445–503Google Scholar
  263. Rosière CA, Rios FJ (2004) The origin of hematite in high-grade iron ores based on infrared microscopy and fluid inclusion studies: the example of the Conceição mine, Quadrilatero Ferrifero, Brazil. Econ Geol 99:611–624Google Scholar
  264. Rosière CA, Siemes H, Rios FJ, Quade H (2002) Deformation-controlled high-grade iron ores. Ext Abs Quadriennal IAGOD Symp and Geocongress 11th, Windhoek, Geol Surv Namibia, CD-ROMGoogle Scholar
  265. Roy S (1992) Environments and processes of manganese deposition. Econ Geol 87:1218–1236Google Scholar
  266. Rozendaal A (1980) The Gamsberg zinc deposit, South Africa: a banded stratiform base-metal sulphide deposit. Proc Fifth IAGOD Symp, pp 619–633Google Scholar
  267. Rozendaal A (1986) The Gamsberg zinc deposit, Namaqualand district. In: Anhaeusser CR, Maske S (eds) Mineral Deposits of southern Africa, vol 2. Geol Soc S Afr, pp 1477–1488Google Scholar
  268. Russell MJ (1978) Downward-excavating hydrothermal cells and Irish-type ore deposits: importance of an underlying thick Caledonian prism. Trans Inst Min Metall B87:B168–B171Google Scholar
  269. Ruxton P (1986) Sedimentology, isotopic signature and ore genesis of the Klein Aub Copper Mine, South West Africa/Namibia. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, vol 2. Geol Soc S Afr, pp 1725–1738Google Scholar
  270. Ryan PJ, Lawrence DL, Lipson, RD, Moore JM, Paterson A, Stedman DP, Van Zyl D (1986) The Aggeneys base metal sulphide deposits, Namaqualand District. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa, vols I and II. Geol Soc S Afr, pp 1447–1474Google Scholar
  271. Sangster DF (1983) Mississippi Valley-type deposits: a geological melange. In: Kisvarsanyi G, Grant SK, Pratt WP, Koenig JW (eds) International conference on Mississippi Valley-type lead-zinc deposits. Proc Vol Univ Missouri, Rolla, pp 7–19Google Scholar
  272. Sangster DF (ed) (1996) Carbonate-hosted lead-zinc deposits. Soc Econ Geol Sp Publ 4Google Scholar
  273. Saunders JA, Swann CT (1990) Trace-metal content of Mississippi oil field brines. J Geochem Explor 37:171–183Google Scholar
  274. Sawkins FJ (1989) Anorogenic felsic magmatism, rift sedimentation and giant Proterozoic Pb-Zn deposits. Geology 17:657–660Google Scholar
  275. Sawkins FJ (1990) Metal deposits in relation to plate tectonics. 2nd ed. Springer-Verlag, BerlinGoogle Scholar
  276. Schissel D, Aro P (1992) The major early Proterozoic sedimentary iron and manganese deposits and their tectonic setting. Econ Geol 87:1367–1374Google Scholar
  277. Schmidt-Mumm A, Behr HJ, Horn EE (1987) Fluid systems in metaplaya sequences in the Damara Orogen (Namibia): evidence for sulphur-rich brines – general evolution and first results. Chem Geol 61:135–145Google Scholar
  278. Schlüter T (1997) Geology of East Africa. Gebrüder Borntraeger, BerlinGoogle Scholar
  279. Scholz CA, Moore TC, Hutchinson DR, Golmshtok AJa, Klitgord KD, Kuotchkin AG (1998) Comparative stratigraphy of low-latitude versus high latitude lacustrine rift basins: seismic data examples from the East African and Baikal rifts. Palaeogeog, Palaeoclim, Palaeoec 140:401–420Google Scholar
  280. Schneider GIC, Seeger KG (1992) Copper. In: The Mineral Resources of Namibia, 1st edn. Geol Surv Namibia, pp 2.3–4.3Google Scholar
  281. Selley D, Broughton D, Scott R, Hitzman M, Bull S, Large RR, McGoldrick P, Croaker M, Pollingotn N, Barba F (2005) A new look at the geology of the Zambian Copperbelt. Econ Geol 100th Ann Iss: 965–1000Google Scholar
  282. Şener AK, Young C, Groves DI, Krapež B, Fletcher IR (2005) Major orogenic gold episode associated with Cordilleran-style tectonics related to the assembly of Palaeoproterozoic Australia. Geology 33(3):225–228Google Scholar
  283. Sengör AMC (2001) Elevation as an indicator of mantle plume activity. Geol Soc Am Sp Pap 352:183–225Google Scholar
  284. Shanks WC, Bischoff JL (1980) Geochemistry, sulfur isotope composition and accumulation rates of Red Sea geothermal deposits. Econ Geol 75:445–459Google Scholar
  285. Shoemaker EM, Shoemaker CS (1996) The Proterozoic impact record of Australia. AGSO J Geol & Geophys 16:379–398Google Scholar
  286. Sibson RH, Moore JMcM, Rankin AH (1975) Seismic pumping- a hydrothermal fluid transport mechanism. J Geol Soc London 131:653–659Google Scholar
  287. Smirnov VI (ed) (1977) Ore deposits of the USSR. Pitman Publ, LondonGoogle Scholar
  288. Smith P (1986) The geology of the Broken Hill Pb-Ag-Zn-Cu deposit. In: Abstr Geocongress '86 Johannesburg, Geol Soc S Afr, pp 881–884Google Scholar
  289. Solomon M, Groves DI, Jaques AL (2000) The geology and origin of Australia's mineral deposits. Centre for Ore Deposits Research, Univ West Australia and Univ Tasmania Centre Global Metall, Publ 32Google Scholar
  290. Southgate PN (ed) (2000) Carpentaria-Mt Isa zinc belt: basement framework, chronostratigraphy and geodynamic evolution of Proterozoic successions. Aus J Earth Sci Thematic Issue 47Google Scholar
  291. Southgate PN, Kyser TK, Large RR (eds) (2006a) A special issue devoted to Australian Zn-Pb-Ag deposits: A basin systems and fluid-flow analysis. Econ Geol 101(6)Google Scholar
  292. Southgate PN, Kyser TK, Scott DL, Large RR, Golding SD, Polito PA (2006b) A basin system and fluid-flow analysis of the Zn-Pb-Ag Mount Isa-type deposits of northern Australia: identifying metal sources, basinal brine reservoirs, times of fluid expulsion, and organic matter reactions. Econ Geol 101:1103–1116Google Scholar
  293. Speczik S (1995) The Kupferschiefer mineralisation of Central Europe: new aspects and major areas of future research. Ore Geol Rev 9:411–426Google Scholar
  294. Spry PG, Wonder JD (1989) Manganese-rich garnet rocks associated with the Broken Hill lead-zinc-silver deposit, New South Wales, Australia. Canad Mineral 27:275–292Google Scholar
  295. Spry PG, Heimnann A, Messerley JD, Houk RS (2007) Discrimination of metamorphic and metasomatic processes at the Broken Hill Pb-Zn-Ag deposit, Australia: Rare earth element signatures of garnet-rich rocks. Econ Geol 102:471–494Google Scholar
  296. Stalder M, Rozendaal A (2004) Apatite nodules as an indicator of depositional environment and ore genesis for the Mesoproterozoic Broken Hill type Gamsberg Zn-Pb deposit, Namaqua Province, South Africa. Mineral Depos 39:189–203Google Scholar
  297. Stalder M, Rozendaal A (2005) Distribution and geochemical characteristics of barite and barium-rich rocks associated with the Broken Hill-type Gamsberg Zn-Pb deposit, Namaqua Province, South Africa. Sth Afr J Geol 108:35–50Google Scholar
  298. Stowe CW, Hartnady CJH, Joubert P (1984) Proterozoic tectonic provinces of Southern Africa. Precambr Res 25:229–231Google Scholar
  299. Sverjensky DA (1986) Genesis of mississipi valley-type lead-zinc deposits. Ann Rev Earth Planet Sci 14:177–199Google Scholar
  300. Swager CP (1985) Syndeformational carbonate-replacement model for the copper mineralization at Mount Isa, northwest Queensland: a microstructural study. Econ Geol 80: 107–125Google Scholar
  301. Sweeney MA, Binda PL (1989) Mineralization controls and source of metals in the Lufillian Fold Belt, Shaba (Zaire), Zambia and Angola – A discussion. Econ Geol 84:963–964Google Scholar
  302. Thomas RJ, Agenbacht ALD, Cornell DH, Moore JM (1994) The Kibaran of southern Africa: tectonic evolution and metallogeny. Ore Geol Rev 9:131–160Google Scholar
  303. Thorne WS, Hagemann SG, Barley ME (2004) Petrographic and geochemical evidence for the hydrothermal evolution of the North deposit, Mt Tom Price, Western Australia. Mineral Depos 39:766–783Google Scholar
  304. Tiercelin JJ, Thouin C, Kalala T, Mondeguer A (1989) Discovery of sublacustrine hydrothermal activity and associated massive sulfides and hydrocarbons in the north Tanganyika trough, East African rift. Geology 17:1053–1056Google Scholar
  305. Tiercelin JJ, Boulègue J, Simoneit BRT (1991) Hydrocarbons, sulphides, and carbonate deposits related to sublacustrine hydrothermal seeps in the north Tanganyika trough, east African Rift. In: Parnell J, Kucha H, Landais P (eds) Bitumen and ore deposits, Springer-Verlag, Berlin, pp 96–113Google Scholar
  306. Tiercelin JJ, Pflumio C, Cartec M, Boulègue J, gente P, Rolet J, Coussement C, Stetter KO, Huber R, Buku S, Mifundu W (1993) Hydrothermal vents in Lake Tanganyika, East Africa Rift System. Geology 21:499–502Google Scholar
  307. Tobin KJ (1990) The paleoecology and significance of the Gunflint-type microbial assemblages from the Frere Formation (Early Proterozoic), Nabberu Basin, Western Australia. Precambr Res 47:71–81Google Scholar
  308. Tompkins LA, Pedone VA, Roche MT, Groves DI (1994a) The Cadjebut deposit as an example of Mississippi Valley-type mineralization on the Lennard Shelf, Western Australia – single episode or multiple events? Econ Geol 89:450–466Google Scholar
  309. Tompkins LA, Rayner MJ, Groves DI, Roche MT (1994b) Evaporites: in situ sulphur source for rhythmically banded ore in the Cadjebut Mississippi Valley-type Zn-Pb deposit, Western Australia. Econ Geol 89:467–492Google Scholar
  310. Toth JR (1980) Deposition of submarine crusts rich in manganese and iron. Geol Soc Am Bull 91:44–54Google Scholar
  311. Tregoning TD (1987) The tectono-metallogenesis during the Irumide and Pan African events in South West Africa/Namibia. MSc Thesis, Rhodes University, GrahamstownGoogle Scholar
  312. Trendall AF (2002) The significance of iron-formation in the Precambrian stratigraphic record. Spec Publ Int Ass Sediment 33:33–66Google Scholar
  313. Trendall AF, Blockley JG (1970) The iron formation of the Precambrian Hamersley Group, Wetsern Australia. Geol Surv West Aust Bull 119Google Scholar
  314. Trendall AF, Blockley JG (2004) Precambrian iron formation. In: Erikson PG, Altermann W, Nelson DR, Muller WU, Catuneau O (eds) The precambrian earth: tempos and events, Elsevier, Amsterdam, pp 403–421Google Scholar
  315. Trendall AF, Morris RC (eds) (1983) Iron-formation: facts and problems. Elsevier, AmsterdamGoogle Scholar
  316. Tsikos H, Moore JM (1998) The Kalahari manganese field: an enigmatic association of iron and manganese. S Afr J Geol 101:287–290Google Scholar
  317. Tsikos H, Beukes NJ, Moore JM, Harris C (2003) Deposition, diagenesis and secondary enrichment of metals in the Paleoproterozoic Hotazel Iron Formation, Kalahari Manganese Field, South Africa. Econ Geol 98:1449–1462Google Scholar
  318. Turner RJW, Leitch CHB (1992) Relationship of albitic and chloritic alteration to gabbro dykes and sills at the Sullivan deposit and nearby area, southeastern British Columbia. Geol Surv Canada Current Res Paper 92–1E 95–105Google Scholar
  319. United Nations Ocean Economics (1979) Manganese nodules: dimensions and perspectives. Springer, BerlinGoogle Scholar
  320. Unrug R (1988) Mineralization controls and source of metals in the Lufillian Fold Belt, Shaba (Zaire), Zambia and Angola. Econ Geol 83:1247–1258Google Scholar
  321. Van Hise CR, Leith CK (1911) The geology of the Lake Superior region. US Geol Surv Monogr 52Google Scholar
  322. Van Ziji CZ (1981) Structural and metamorphic evolution in the transitional zone between craton and mobile belt. Precambr Res Unit Univ Cape Town Bull 31Google Scholar
  323. Vearncombe JR, Chisnall AW, Dentith MC, Dörling SL, Rayner MJ, Holyland PW (1996) Structural controls on Mississippi Valley-type mineralization, the southeast Lennard Shelf, Western Australia. Soc Econ Geol Sp Publ 4:74–93Google Scholar
  324. Vearncombe S, Kerrich R (1999) Geochemistry and geodynamic setting of volcanic and plutonic rocks associated with Early Archaean volcanogenic massive sulphide mineralization, Pilbara Craton. Precambr Res 98:243–270Google Scholar
  325. Vineyard JD (ed) (1977) An issue devoted to the Viburnum Trend, Southeast Missouri. Econ Geol 77(3)Google Scholar
  326. Wallace MW, Moxham H, Johns B, Marshallsea S (2002) Hydrocarbons and Mississippi Valley-type sulfides in the Devonian reef complexes of the Eastern Lennard Shelf, Canning Basin, Western Australia. In: Keep M, Moss SJ (eds) The sedimentary basins of Western Australia 3, Proceed Petrol Expl Soc Aust Symp, Perth, Western Australia, pp 795–815Google Scholar
  327. Walter MR, Goode ADT, Hall JA (1976) Microfossils from the newly discovered Precambrian stromatolitic iron formation in Western Australia. Nature 261:221–223Google Scholar
  328. Walter MR, Veevers JJ, Calver CR, Grey K (1995) Neoproterozoic stratigraphy of the Centralian Superbasin, Australia. Precambr Res 73:173–195Google Scholar
  329. Walters S, Skrzeczynski B, Whiting T, Bunting F, Arnold G (2002) Discovery and geology of the Cannington Ag-Pb-Zn deposit, Mount Isa Eastern Succession, Australia: development and application of an exploration model for Broken Hill-type deposits. Soc Econ Geol Sp Publ 9:95–118Google Scholar
  330. Warren JK (2000) Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis. Aus J Earth Sci 47:179–208Google Scholar
  331. Webb AD, Dockens GR, Oliver NHS (2003) From banded iron-formation to iron ore: geochemical and mineralogical constraints from across the Hamersley Province, Western Australia. Chem Geol 197:215–251Google Scholar
  332. Webster AE (2006) The geology of the Broken Hill lead-zinc-silver deposit, New South Wales, Australia. CODES Monogr 1, University of Tasmania, BurnieGoogle Scholar
  333. Welke HJ, Allsopp HL, Hughes M J (1983) Lead isotopic studies relating to the genesis of the base metal deposits in the Owambo basin, Namibia. Geol Soc S Afr Spec Publ 11:321Google Scholar
  334. Wheatley CJV, Whitfield GG, Kenny KJ, Birch A (1986) The Pering carbonate-hosted zinc-lead deposit, Griqualand West. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, Geol Soc S Afr, pp 867–874Google Scholar
  335. White N, Lovell B (1997) Measuring the pulse of a plume with the sedimentary record. Nature 387:888–891Google Scholar
  336. Whiteman AJ, Naylor D, Pegrum R, Rees G (1975) North Sea troughs and plate tectonics. Tectonophysics 26:39–54Google Scholar
  337. Wilkinson JJ (2003) On diagenesis, dolomitisation and mineralisation in the Irish Zn-Pb orefield. Mineral Depos 38:968–983Google Scholar
  338. Williams N (1978a) Studies of the base metal sulfide deposits at McArthur River, Northern Territory, Australia: I. The Cooley and Ridge deposits. Econ Geol 73:1005–1035Google Scholar
  339. Williams N (1978b) Studies of the base metal sulfide deposits at McArthur River, Northern Territory, Australia: II. The sulfide-S and organic-C relationships of the concoradnt deposits and their significance. Econ Geol 73:1036–1056Google Scholar
  340. Williams PJ (1998a) An introduction to the metallogeny of the McArthur River-Mount Isa-Cloncurry minerals province. Econ Geol 93:1120–1131Google Scholar
  341. Williams PJ (1998b) (ed) A special issue on the McArthur River-Mount Isa-Cloncurry minerals province. Econ Geol 93(8)Google Scholar
  342. Willner A, Schreyer W, Moore JM (1990) Peraluminous metamorphic rocks from the Namaqualand Metamorphic Complex (South Africa): Geochemical evidence for an exhalation-related sedimentary origin in a Mid-Proterozoic rift system. Chem Geol 81:221–240Google Scholar
  343. Wolf KH (ed) (1981) Handbook of stratabound and stratiform ore deposits: Elsevier, AmsterdamGoogle Scholar
  344. Wolfenden E, Ebinger C, Yrgu G, Deino A, Ayalew D (2004) Evolution of the northern Main Ethiopian rift: birth of a triple junction. Earth Planet Sci Lett 224:213–228Google Scholar
  345. Wooley AR (2001) Alkaline rocks and carbonatites of the world. Part 3. Africa. Geol Soc Publ House, LondonGoogle Scholar
  346. Wright TJ, Ebinger C, Biggs J, Ayele A, Yirgu G, Keir D, Stork A (2006) Magma-mantained rift segmentation at continental rupture in the 2005 Afar dyking episodes. Nature 442:291–294Google Scholar
  347. Wyborn LAI, Heinrich CA, Jaques AL (1994) Australian Proterozoic mineral systems: essential ingredients and mappable criteria. Australas. Inst Min Metall Publ Ser 5/94:109–115Google Scholar
  348. Yakubchuk AS, Shatov VV, Kirwin D, Edwards A, Tomurtogoo O, Badarch, G, Buryak VA (2005) Gold and base metal metallogeny of the Central Asian Orogenic Collage. Econ Geol 100th Ann Iss: 1035–1068Google Scholar
  349. Yirgu G, Ebinger CJ, Maguire PKH (eds) (2006) The Afar volcanic province within the East African Rift System. Geol Soc Lond Sp Publ 259Google Scholar
  350. Zhang Y, Sorjonen-Ward P, Ord A, Southgate PN (2006) Fluid flow during deformation associated with structural closure of the Isa Superbasin at 1575 Ma in central and northern Lawn Hill Platform, Northern Australia. Econ Geol 101:1293–1312Google Scholar
  351. Zhao JX, McCulloch MT, Korsch RJ (1994) Characterisation of a plume-related ∼800 Ma magmatic event and its implications for basin formation in central-southern Australia. Earth Planet Sci Lett 121:349-367Google Scholar
  352. Zierenberg RA, Shanks WC (1983) Mineralogy and geochemistry of epigenetic features in metallifeorus sediments, Atlantis-II Deep, Red Sea. Econ Geol 78:57–73Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Geological Survey of Western AustraliaEast PerthAustralia

Personalised recommendations