Advertisement

Intrusion-Related Hydrothermal Mineral Systems

Abstract

Circulation of hydrothermal fluids in the Earth’s crust takes place under various tectonic regimes and geological situations, within which a complex array of transitional conditions can lead to a large number of ore deposit types and mineralisation styles that effectively defy a rigorous classification. For this reason descriptions of hydrothermal mineral systems, by necessity, must be regarded as end members or parts of a continuum. This simplification is an expedient to help in the understanding of what are obviously very complex natural systems. Also, it must be remembered that the same geological situation may occur in a number of different tectonic settings. For example, felsic plutonic rocks occur in magmatic arcs related to subduction and in anorogenic rift settings.

Keywords

Fluid Inclusion Hydrothermal Fluid North China Craton Mantle Plume Vein System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad M, Wygralak AS, Ferenczi PA (1999) Gold deposits of the Northern Territory. Northern Territory Geol Surv Rep 11Google Scholar
  2. Allen CM (ed) (2001) Thematic issue – 25 years of I and S granites. Aust J Earth Sci 48(4)Google Scholar
  3. Anderson MR, Rankin AH, Spiro B (1992) Fluid mixing in the generation of mesothermal gold mineralisation in the Transvaal Sequence, Transvaal, South Africa. Eur J Mineral 4:933–963Google Scholar
  4. Annikova IY, Vladimirov AG, Vystavnoi SA, Zhuravlev DZ, Kruk NN, Lepekhina EN, Matukov DI, Moroz EN, Palesskii SV, Ponomarchuk VA, Rudnev SN, Sergeev SA (2006) U-Pb and 39Ar/40Ar dating and Sm-Nd and Pb-Pb isotopic study of the Kalguty molybdenum-tungsten ore-magmatic system, southern Altai. Petrol 14:81–97Google Scholar
  5. Arévalo C, Grocott J, Martin W, Pringle M, Taylor G (2006) Structural setting of the Candelaria Fe oxide Cu-Au deposit, Chilean Andes. Econ Geol 101:819–841Google Scholar
  6. Arnaud NN, Vidal PH, Tapponier P, Matte PH, Deng WM (1992) The high K2O volcanism of northwestern Tibet: geochemistry and tectonic implications. Earth Planet Sci Lett 111:351–367Google Scholar
  7. Artamonov MA, Vostokov YN (1982) Ring structures of the Baltic-Scandinavian region. Inter Geol Rev 24:643–645Google Scholar
  8. Ash JP, Tyler N (1986) A preliminary investigation of fluid inclusions in the Pilgrim’s Rest goldfield, eastern Transvaal. Econ Geol Res Unit, Univ Witwatersrand, Inf Circ 180Google Scholar
  9. Atherton MP, Gribble CD (eds) (1983) Migmatites, melting and metamorphism. Shiva Publ Ltd, NantwichGoogle Scholar
  10. Bailey DK (1983) The chemical and thermal evolution of rifts. Tectonophysics 94:585–598Google Scholar
  11. Bailey DK (1984) Kimberlite: “the mantle sample” formed by ultrametasomatism. In: Kornprobst J (ed) Kimberlite and relate rocks. Elsevier, Amsterdam, pp 232–333Google Scholar
  12. Bailey DK (1987) Mantle metasomatism – perspective and prospect. Geol Soc Spec Publ 30:1–14Google Scholar
  13. Bain JHC, Draper JJ (eds) (1997) North Queensland geology. Australian Geological Survey Organisation Bulletin 240 Geol Surv Queensland, Queensland Geol 9Google Scholar
  14. Baker EM, Tullemans FJ (1990) Kidston gold deposit. In: Hughes FE (ed) Geology and mineral deposits of Australia and Papua New Guinea, The Aus I MM, Monogr 14, vol 2, pp 1461–1465Google Scholar
  15. Baker EM, Andrew AS (1991) Geologic, fluid inclusion, and stable isotope studies of the gold-bearing breccia pipe at Kidston, Queensland, Australia. Econ Geol 86:610–830Google Scholar
  16. Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626Google Scholar
  17. Barsukov VL (1957) The geochemistry of tin. Geokimiya 1:41–53Google Scholar
  18. Barton MD (1996) Granitic magmatism and metallogeny of southwestern North America. Trans Geol Soc Edinb, Earth Sci 87:261–280Google Scholar
  19. Barton MD, Johnson DA (1996) Evaporitic source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology 24:259–262Google Scholar
  20. Bell K (ed) (1989) Carbonatites – genesis and evolution. Unwin Hyman, LondonGoogle Scholar
  21. Bell K, Simonetti A (1996) Carbonatite magmatism and plume activity: implications from the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. J Petrol 37:1321–1339Google Scholar
  22. Bell K, Kjarsgaard BA, Simonetti A (eds) (1998) Carbonatites into the twenty-first century, a volume in honour of John Gittins. J Petrol 39(11–12)Google Scholar
  23. Benedetti M, Boulegue J, Hieronymous B, Kotschoubey B, Pinto da Silva E (1990) Present behaviour of gold in lateritic environment, Salobo (State of Para-Brazil). Geochemistry of the Earth's surface and of mineral formation. 2nd Int. Symp., Aix-en-Provence, pp 27–29Google Scholar
  24. Best MG (1982) Igneous and metamorphic petrology. WH Freeman and Co, New YorkGoogle Scholar
  25. Beus AA, Zalashkova NY (1964) Post-magmatic high temperature metasomatic processes in granitic rocks. Int Geol Rev 6:668–681Google Scholar
  26. Black R, Bowden P (eds) (1985) Alkaline ring complexes in Africa. J Afr Earth Sci 3(1/2)Google Scholar
  27. Black R, Lameyre J, Bonin B (1985) The structural setting of alkaline complexes in Africa (a review). J Afr Earth Sci 3:5–16Google Scholar
  28. Blissett AH, Creaser RA, Daly SJ, Flint RB, Parker AJ (1993) Gawler range volcanics. In: Drexe JF, Preiss WV, Parker AJ (eds) The geology of South Australia. Geol Surv South Australia Bull 54: 107–124Google Scholar
  29. Boer RH, Meyer FM, Robb LJ, Graney JR, Vennemann TW, Kesler SE (1995) Mesothermal-type mineralization in the Sabie-Pilgrim’s Rest gold field, South Africa. Econ Geol 90:860–876Google Scholar
  30. Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos, doi:10.1016/j.lithos.2006.12.007Google Scholar
  31. Bonin B, Bébien J, Mason P (2002) Granite: a planetary point of view. Gondwana Res 5:261–273Google Scholar
  32. Borisenko AS, Pavlova GG, Borovikov AA, Obolenskiy AA (1999) Ag-Sb deposits of the Yustid depression, eastern Russia and northwest Mongolia. Int Geol Rev 41:639–664Google Scholar
  33. Borisenko AS, Sotnikov VI, Izokh AE, Polyakov GV, Obolensky AA (2006) Permo-Triassic mineralization in Asia and its relation to plume magmatism: Russian Geol Geophys 47:166–182Google Scholar
  34. Borrok DM, Kesler SE, Boer RH, Essene EJ (1998) The Vergenoeg magnetite-fluorite deposit, South Africa: supportr for a hydrothermal model for massive iron oxide deposits. Econ Geol 93:564–586Google Scholar
  35. Bowden P (1985) The geochemistry and mineralization of alkaline ring complexes in Africa (a review). Jour African Earth Sci 3:17–40Google Scholar
  36. Bowden P, Kinnaird AJ (1984a) Petrological and geochemical criteria for the identification of (potential) ore-bearing Nigerian granitoids. Proc 27th Int Geol Congr Moscow, vol 9. VNU Sci Press, Utrecht, pp 85–119Google Scholar
  37. Bowden P, Kinnaird AJ (1984b) The petrology and geochemistry of alkaline granites from Nigeria. Phys Earth Planet Interiors 35:198–211Google Scholar
  38. Bowden P, Kinnaird JA, Abaa SI, Ike EC, Turaki UM (1984) Geology and mineralization of the Nigerian anorogenic ring complexes. Geol Jahrb B56:1–65Google Scholar
  39. Bowell RJ, Gize AP, Foster RP (1993) The role of fulvic acid in the supergene migration of gold in tropical rainforest soils. Geochim Cosmochim Acta 57:4179–4190Google Scholar
  40. Brathwaite RL, Pirajno F (1993) The metallogenic map of New Zealand. Inst Geol Nuclear Sci Monogr 3Google Scholar
  41. Buchanan PC, Reimold WU, Koeberl C, Kruger FJ (2004) Rb-Sr and Sm-Nd isotopic compositions of the Rooiberg Group, South Africa: early Bushveld-related volcanism. Lithos 29:373–388Google Scholar
  42. Burke K (1996) The African plate. S Afr Jour Geol 99:341–409Google Scholar
  43. Burnard PG, Polya DA (2004) Importance of mantle derived fluids during granite associated hydrothermal circulation: he and Ar isotopes of ore minerals from Panasqueira. Geochim Cosmochim Acta 68:1607–1615Google Scholar
  44. Burnham CW (1997) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal deposits, 3rd edn. Wiley, New York, pp 63–123Google Scholar
  45. Burt DM (1981) Acidity-salinity diagrams – application to greisen and porphyry deposits. Econ Geol 76:832–843Google Scholar
  46. Butt CRM (1989) Genesis of supergene gold deposits in the lateritic regolith of the Yilgarn Block, Western Australia. Econ Geol Monogr 6:460–470Google Scholar
  47. Campbell IH, Compston DM, Richards JP, Johnson JP, Kent AJR (1998) Review of the application of isotopic studies to the genesis of Cu-Au mineralization at Olympic Dam and Au mineralization at Porgera, the Tennant creek district and Yilgarn Craton.Aust J Earth Sci 45:201–218Google Scholar
  48. Candela PA (1997) A review of shallow, ore-related granites: textures, volatiles and ore metals. J Petrol 38:1619–1633Google Scholar
  49. Cassidy KF, Barley ME, Groves DI, Perring CS, Hallberg JA (1991) An overview of the nature, distribution and inferred tectonic setting of granitoids in the late-Archean Norseman-Wiluna belt. Precamb Res 51:51–83Google Scholar
  50. Cawood PA (2005) Terra Australis Orogen: Rodinia breakup and development of the pacific and Iapetus margins of Gondwana during the Neoproterozoic an Paleozoic. Earth-Sci Rev 69:249–279Google Scholar
  51. Cawood PA, Tyler IM (2004) Assembling and reactivating the Proterozoic Capricorn Orogen: lithotectonic elements, orogenies and significance. Precambr Res 128:201–218Google Scholar
  52. Černý P, Blevin PL, Cuney M, London D (2005) Granite-related ore deposits. Econ Geol 100th Ann Vol: 337–370Google Scholar
  53. Chao ECT, Back JM, Minkin JA, Tatsumoto M, Wang JW, Conrad JE, McKee EH, Hou ZL, Meng QR, Huang SG (1997) The sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China: a cornerstone example of a giant polymetallic ore deposits of hydrothermal origin. USGS Bull 2143Google Scholar
  54. Chappell BW, White AJR (1974) Two contrasting granite types. Pacific Geol 8:173–174Google Scholar
  55. Chappell BW, Stephens WE (1988) Origin of infracrustal (I-type) granite magmas. Trans Roy Soc Edinb Earth Sci 79:71–86Google Scholar
  56. Chappell BW, Bryant CJ, Wyborn D, White AJR, Williams IS (1998) High- and low-temperature I-type granites. Resour Geol 48:225–235Google Scholar
  57. Clarke LB (1989) The geology of the Kruidfontein Volcanic Complex, Transvaal, S. Africa. Unpubl. PhD Thesis, Univ Leicester, 167 pp.Google Scholar
  58. Clarke LB, Le Bas MJ (1990) Magma mixing and metasomatic reaction in silicate-carbonate liquids at the Kruidfontein carbonatitic volcanic complex, Transvaal. Mineral. Mag 54:45–56Google Scholar
  59. Clemens JD (2003) S-type granitic magmas – petrogenetic issues, models and evidence. Earth-Sci Rev 61:1–18Google Scholar
  60. Coetzee CB (1976) Rare earths. In: Coetzee CB (ed) Mineral resources of the Republic of South Africa. Geol Surv Handb 7:199–201Google Scholar
  61. Coetzee J (1986) The Lease Granite – a granophyric, miarolitic mineralized granite at the apical region of a tin-tungsten system. Trans Geol Soc S Afr 89:335–345Google Scholar
  62. Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Miner Petrol 80:189–200Google Scholar
  63. Cooper RW, Langford RL, Pirajno F (1998) Mineral occurrences and exploration potential of the Bangemall Basin. Geol Surv West Aus Rept 64Google Scholar
  64. Creaser RA (1989) Geology and petrology of Middle Proterozoic felsic magmatism of the Stuart Shelf, South Australia. Unpubl. PhD Thesis, LaTrobe University, Melbourne, Australia.Google Scholar
  65. Creaser RA, Price RC, Wormald RJ (1991) A-type granites revisited: assessment of a residual source model. Geology 19:163–166Google Scholar
  66. Creaser RA, White ARJ (1991) Yardea Dacite – large volume, high-temperature felsic magmatism from the Middle Proterozoic of South Australia. Geology 19:48–51Google Scholar
  67. Crocker IT (1979) Metallogenic aspects of the Bushveld granites: fluorite, tin and associated rare metal carbonatite mineralization. Geol Soc S Afr Spec Publ 5:275–295Google Scholar
  68. Crocker IT (1985) Volcanogenic fluorite-hematite deposits and associated pyroclastic rock suite at Vergenoeg, Bushveld Complex. EconGeol 80:1181–1200Google Scholar
  69. Crocker IT (1986) The Zaaiplaats tin field, Potgietersrus district. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa. Geol Soc S Afr 2: 1287–1299Google Scholar
  70. Crocker IT, Martini JEJ, Sonhnge APG (1988) The fluorspar deposits of the Republics of South Africa and Bophuthatswana. Department of Mineral and Energy Affairs. Geol Surv Handb 11Google Scholar
  71. Cross KC, Daly SJ, Flint RB (1993) Mineralisation associated with the GRV and Hiltaba Suite Granitoids. Olympic dam deposit. In: Drexel JF, Preiss WV, Parker AJ (eds), Geol South Aust. Bull. 54:132–138.Google Scholar
  72. Dahlkamp FJ (1993) Uranium ore deposits. Springer-Verlag, BerlinGoogle Scholar
  73. Daly SJ, Fanning GM, Fairclough MC (1998) Tectonic evolution and exploration potential of the Gawler Craton, South Australia. AGSOJ Aus Geol & Geophys 17:145–168Google Scholar
  74. Davidson GJ (2002) The shallow to mid-crustal family of iron oxide copper-gold deposits: size, alteration and mechanisms of formation. In: Cooke DR, Pongratz J (eds), Giant ore deposits: characteristics, genesis and exploration, CODES Spec Publ 4, pp 79–102Google Scholar
  75. Davidson GJ, Large RR (1998) Proterozoic copper-gold deposits. AGSO J Aust Geol & Geophys 17:105–113Google Scholar
  76. Davy R, El-Ansary M (1986) Geochemical patterns in the laterite profile at the Boddington gold deposit, Western Australia. Jour Geochem Expl 26:119–144Google Scholar
  77. Didier J (1973) Granites and their enclaves – the bearing of enclaves on the origin of granites. Elsevier Scient Publ Co., AmsterdamGoogle Scholar
  78. Dobretsov NL (2005) 250 Ma large igneous province of Asia: Siberian and Emeishan traps (plateau basalts) and associated granitoids. Russian Geol & Geophys 46:870–890Google Scholar
  79. Drew LJ, Meng Q, Sun W (1990) The Bayan Obo iron-rare earth-niobium deposits, Inner Mongolia, China. Lithos 26:43–65Google Scholar
  80. du Toit MC, Pringle IC (1998) Tin. In: Wilson MGC, Anhaeusser CR (eds) The mineral resources of South Africa, Council Geoscie Handbk 16, pp. 613–620Google Scholar
  81. Duncan RK (1992) Geology and mineralization of the Mt. Weld rare earths deposit, Laverton, Western Australia. TMS-Australas Inst. Min. Metall. Joint Sympos. San Diego, CaliforniaGoogle Scholar
  82. Duncan RK, Willett GC (1990) Mount Weld carbonatite. In: Hughes FE (ed) Geology and mineral deposits of Australia and Papua New Guinea, Aus Isnt Min Metall Monogr 14, pp 591–598Google Scholar
  83. Eadington PJ (1983) A fluid inclusion investigation of ore formation in a tin-mineralized granite, New England, New South Wales. Econ Geol 78:1204–1221Google Scholar
  84. Eales HV, Cawthorn RG (1996) The Bushveld complex. In: Cawthorn RG (ed) Layered intrusions, Elsevier, Develpm Petrol 15, pp 181–230Google Scholar
  85. Ebinger CJ, Sleep NH (1998) Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature 395:788–791Google Scholar
  86. Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134Google Scholar
  87. Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644Google Scholar
  88. Edgar AD (1983) Relationship of ultrapotassic magmatism in the Western USA to the Yellowstone plume. Neues jahrbuch Miner. Abh1 47:35–46Google Scholar
  89. Eggers A (1979) Large scale circular features in north Westland and west Nelson, New Zealand, possible structural control of porphyry molybdenum-copper mineralization? Econ Geol 76:2064–2065Google Scholar
  90. Ellenberger F, Tamain ALG (1980) Hercynian Europe. Episodes 1980:2–27Google Scholar
  91. Enzweiler J, Joekes I (1990) Adsorption of colloidal gold on colloidal iron oxides. J Geochem. Expl 40:133–142Google Scholar
  92. Eriksson SC (1989) Phalaborwa: a saga of magmatism, metasomatism and miscibility. In: Bell K (ed) Carbonatites – genesis and evolution. Unwin Hyman, London, pp 221–254Google Scholar
  93. Eugster HP (1984) Granites and hydrothermal ore deposits: a geochemical framework. Mineral Mag 49:7–23Google Scholar
  94. Ewart A, Milner SC, Armstrong RA, Duncan AR (1998a) Etendeka volcanism of the Goboboseb Mountains and Messum Igneous Complex, Namibia. Part I: geochemical evidence of Early Cretaceous Tristan plume melts and the role of crustal contamination in the Paraná-Etendeka CFB. J Petrol 39:191–225Google Scholar
  95. Ewart A, Milner SC, Armstrong RA, Duncan AR (1998b) Etendeka volcanism of the Gobobobesb Mounatins and Messum Igneous Complex, Namibia. Part II: voluminous quartz latite volcanism of the Awahab magma system. J Petrol 39:227–253Google Scholar
  96. Fan HR, Xie YH, Wang KY, Tao KJ, Wilde SA (2004a) REE daughter minerals trapped in fluid inclusions in the giant Bayan Obo REE-Nb-Fe deposit, Inner Mongolia, China. Int Geol Rev 46:638–645Google Scholar
  97. Fan HR, Xie YH, Wang KY, Wilde SA (2004b) Methane-rich fluid inclusions in skarn near the giant REE-Nb-Fe deposit at Bayan Obo, northern China. Ore Geol Rev 25:301–309Google Scholar
  98. Fan HR, Hu FF, Wang KY, Xie YH (2005) Aqueous-carbonic-REE fluids in the giant Bayan Obo deposit, China: implications for REE mineralization. In: Mao JW, Bierlein FP (eds) Mineral deposits research: meeting the global challenge, vol 2. Springer, pp 945–948Google Scholar
  99. Fei HC, Xiao RG, Cheng L, Wang CH (2005) Geochemical characteristics and genesis of Na-rich rocks in the Bayan Obo REE-Nb-Fe deposit, Inner Mongolia, China. In: Mao JW, Bierlein FP (eds) Mineral deposits research: meeting the global challenge, vol 1. Springer, pp 385–388Google Scholar
  100. Ferguson J (1973) The Pilanesberg Alkaline Province, southern Africa. Trans Geol Soc S Afr 76:249–270Google Scholar
  101. Fitton JG, Upton BGJ (eds) (1987) Alkaline igneous rocks. Geol Soc Spec Publ 30. Blackwell Scientific Publ, OxfordGoogle Scholar
  102. Flint RB (1993) Hitalba Suite. In: Drexe JF, Preiss WV, Parker AJ (eds) The geology of South Australia. Geol Surv South Australia Bull 54: 127–131Google Scholar
  103. Floyd PA, Exley CS, Stone M (1983) Variscan magmatism in Southwest England – discussion and synthesis. In: Hancock PL (ed) The Variscan Fold Belt in the British Isles. Bristol, pp 178–185Google Scholar
  104. Forsythe DL, Higgins NC (1990) Mount Carbine tungsten deposit. Australas Inst Min Metall Monogr 14(2):1557–1560Google Scholar
  105. Foster RP (1977) Solubility of scheelite in hydrothermal chloride solutions. Chem Geol 20:27–43Google Scholar
  106. Foster RP, Mann AG, Armin T, Burmeister B (1978) Richardson's Kop wolframite deposit: a geochemical model for the behaviour of tungsten. In: Verwoerd WJ (ed) Mineralization in metamorphic terranes. Van Schaik, Pretoria, pp 107–128Google Scholar
  107. Fourie PJ (2000) The Vergenoeg fayalite iron oxide fluorite deposit, South Africa: some new aspects. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits: a global perspective. Aus Miner Found, Adelaide, pp 309–320Google Scholar
  108. Frick C (1975) The Phalaborwa syenite intrusion. Trans Geol Soc S Afr 7:201–214Google Scholar
  109. Gerasimovsky VI, Volkov VP, Kogarko LN, Polyakov AI (1974) Kola peninsula. In: Sorenson H (ed) The alkaline rocks. John Wiley & Sons, New York, pp 206–221Google Scholar
  110. Gieré R (1996) Formation of rare earth minerals in hydrothermal systems. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals – chemistry, origin and ore deposits, Chapman & Hall, pp 105–150Google Scholar
  111. Giles CW (1988) Petrogenesis of the Proterozoic Gawler Range Volcanics, South Australia. Precambr Res 40/41:407–427Google Scholar
  112. Gittins J (1989) The origin and evolution of carbonatite magmas. In: K. Bell (ed) Carbonatites. Genesis and evolution. Unwin Hyman Ltd, Lond, pp 580–600Google Scholar
  113. Goinhas J, Viegas L (1983) Fractional crystallisation and the origin of tin deposits in granitoids. Mineral Depos 13:11–26Google Scholar
  114. Goldfarb RJ, Hart CJR, Miller M, Miller L, Farmer GL, Groves DI (2000) The Tintina gold belt-a global perspective. In: Tucker TL, Smith MT (eds) The Tintina gold belt: concepts, exploration, and discoveries, British Columbia and Yukon Chamber Mines Spec Vol 2, pp 5–34Google Scholar
  115. Gray DJ, Butt CRM, Lawrance LM (1992) The geochemistry of gold in lateritic terrains. In: Butt CRM, Zeegers H (eds), Regolith exploration geochemistry in tropical and subtropical terrains. Handb Expl Geochem 4, Elsevier, Amsterdam, pp 461–482Google Scholar
  116. Griffin WL (ed) (1995) Diamond exploration: into the 21st century. J Geochem Expl 53(1–3)Google Scholar
  117. Groves DI, Solomon M (1964) The geology of the Mt Bischoff district. Proc R Soc Tas 98:1–22Google Scholar
  118. Groves DI, Martin EL, Murchie H, Wellington HK (1972) A century of mining at Mt. Bischoff, 1871–1971. Tasm Geol Surv Bull 54:310 ppGoogle Scholar
  119. Groves DI, McCarthy TS (1978) Fractional crystallization and the origin of tin deposits in granitoids. Mineralium Dep 13:11–26Google Scholar
  120. Groves DI, Godlfarb RJ, Gebre-Mariam M, Hagemann SG, Robert F (1998) Diversity within a unified model for Archaean gold mineralisation in the Yilgarn Craton of Western Australia: an overview of the late-orogenci, structurally-controlled gold deposits. Ore Geol Rev 13:29–64Google Scholar
  121. Groves DI, Vielreicher NM (2001) The Phalaborwa (Palabora) carbonatite-hosted magnetite-copper sulfide deposit, South Africa: an end member of the iron-oxide-copper-gold-rare earth element deposit group? Mineral Depos 36:189–194Google Scholar
  122. Haggerty SE (1997) The superplume model for kimberlites, mantle metasomatism and diamond. In: Hatton CJ (ed) PPM ’97 Abs Vol, Inter Symp Plumes, Plates and Mineral, Pretoria, pp 39–42Google Scholar
  123. Hall A (1971) Greisenisation in the granite of Cligga Head, Cornwall. Proc Geol Ass 82:209–230Google Scholar
  124. Halley SW, Walshe JL (1995) A re-examination of the Mount Bischoff cassiterite sulfide skarn, Western Tasmania. Econ Geol 90:1676–1693Google Scholar
  125. Hannah JL, Stein HJ (1990) Magmatic and hydrothermal processes in ore-bearing systems. Geol Soc Am Spec Pap 246:1–10Google Scholar
  126. Harley M, Charlesworth EG (1994) Structural development and controls to epigenetic, mesothermal gold mineralisation in the Sabie-Pilgrim’s Rest goldfield, Eastern Transvaal, South Africa. Expl Mining Geol 3:231–246Google Scholar
  127. Harmer RE, Gittins J (1998) The case for primary, mantle-derived carbonatite magma. J Petrol 39:1895–1903Google Scholar
  128. Hart CJR, Baker T, Burke M (2000) New exploration concepts for country-rock-hosted, intrusion-related gold systems: Tintina gold belt in Yukon. In: Tucker TL, Smith MT (eds) The Tintina gold belt: concepts, exploration and discoveries. British Columbia and Yukon Chamber Mines Spec Vol 2, pp 145–172Google Scholar
  129. Hart CJR, McCoy DT, Goldfarb RJ, Smith M, Roberts P, Hulstein R, Bakke AA, Bundtzen TK (2002) Geology, exploration and discovery in the Tintina gold province, Alaska and Yukon. Econ Geol Spec Publ 9:241–274Google Scholar
  130. Hart CJR, Mair JL, Goldfarb RJ, Groves DI (2004) Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten belt, Yukon Territory, Canada. Trans Roy Soc Edinb, Earth Sci 95:339–356Google Scholar
  131. Hauri EH, Shimuzu N, Dieu JJ, Hart SR (1993) Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365:221–227Google Scholar
  132. Haxel G (2005) Ultrapotassic rocks, carbonatite and rare earth element deposits, Mountain Pass, southern California. USGS Bull 2160Google Scholar
  133. Haynes D (2006) The Olympic Dam ore deposit – discovery – a personal view. SEG Newslett 66:1–15Google Scholar
  134. Haynes DW, Cross KC, Bills RT, Reed MH (1995) Olympic Dam ore genesis: a fluid mixing model. Econ Geol 90:281–307Google Scholar
  135. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contr Miner Petr 98:455–489Google Scholar
  136. Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-LREE) deposits. Precambr Res 58:241–287Google Scholar
  137. Hosking KFG (1988) The world's major types of tin deposits. In: Hutchison CS (ed) Geology of tin deposits in Asia and the Pacific. Springer, Berlin, Heidelberg, New York, pp 3–49Google Scholar
  138. Huston DL, Vandenberg LC, Wygralak A, Mernagh T, Bagas L, Crispe A, Lambeck L, Cross A, Fraser G, Williams N, Worden K, Meixner T, Goleby B, Jones L, Lyons P, Maidment D (2007) Lode gold mineralisation in the Tanami region, northern Australia. Mineral Depos 42:175–204.Google Scholar
  139. Hutchison CS (1983) Economic deposits and their tectonic settings. MacMillan, New YorkGoogle Scholar
  140. Hutchison CS (ed) (1988) Geology of tin deposits in Asia and the Pacific. United Nations Economic and Social Commission for Asia and the Pacific. Springer, Berlin, Heidelberg, 718 ppGoogle Scholar
  141. Ishihara S (1977) The magnetite-series and ilmenite-series granitic rocks. Min Geol 27:293–305Google Scholar
  142. Ishihara S (1981) The granitoid series and mineralization. Econ Geol 75th Anniv Vol, 458–484Google Scholar
  143. Ishihara S, Sawata H, Arornsuwan S, Busaracome P, Bungbrakearti N (1979) The magnetite series and ilmenite series granitoids and their bearing on tin mineralisation, particularly of the Malay peninsula region. Geol Soc Malay Bull 11:103–110Google Scholar
  144. Ivanova GF (1969) Conditions of concentration of tungsten during greisenization. Geokhimiya 1:22–32Google Scholar
  145. Jackson NJ, Drysdall AR, Stoeser DB (1985) Alkali granite related Nb-Zr-REE-U-Th mineralisation in the Arabian Shield. In: High heat producing (HHP) granites, hydrothermal circulation and ore genesis conference, St. Austell, Cornwall, England, Inst Min Metall. pp 479–487Google Scholar
  146. Johnson JP, Cross KC (1995) U-Pb geochronological constraints on the genesis of the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ Geol 90:1046–1063Google Scholar
  147. Jones TR, Moeller T, Truelove AJ (1990) Collingwood tin deposit. Australas Inst Min Metall Monogr 14(2):1549–1556Google Scholar
  148. Kampunzu AB, Lubala RT (eds) (1991) Magmatism in extensional structural settings – the Phanerozoic Africa plate. Springer, BerlinGoogle Scholar
  149. Kelly WC, Rye RO (1979) Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Econ Geol 74:1721–1822Google Scholar
  150. Kinnaird JA (1985) Hydrothermal alteration and mineralization of the alkaline anorogenic ring complexes of Nigeria. J Afr Earth Sci 3:229–252Google Scholar
  151. Kinnaird JA, Bowden P (eds) (1987a) African Geology Reviews. Geol J 22(Spec Iss)Google Scholar
  152. Kinnaird JA, Bowden P (1987b) African anorogenic alkaline magmatism and mineralization – a discussion with reference to the Niger-Nigerian province. Geol J 22:97–340Google Scholar
  153. Kinnaird JA, Bowden P (1991) Magmatism and mineralization associated with Phanerozoic anorogenic plutonic complexes of the African plate. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings – the Phanerozoic African plate, Springer-Verlag, pp 410–485Google Scholar
  154. Kirwin DJ (2005) Unidirectional solidification textures associated with intrusion-related Mongolian mineral deposits. In: Seltmann R, Gerel O, Kirwin DJ (eds) Geodynamics and metallogeny of Mongolia with a special emphasis on copper and gold deposits, IAGOD Guidebk Ser 11, pp 63–84Google Scholar
  155. Kogarko LN, Kononova VA, Orlova MP, Woolley AR (1995) Alkaline rocks and carbonatites of the world. Part 2: Former USSR. Chapman & Hall, LondonGoogle Scholar
  156. Korn H, Martin H (1954) The Messum igneous complex in South West Africa. Trans Geol Soc S Afr 57:83–124Google Scholar
  157. Korobeinikov AN, Mitrofanov FP, Ehör S, Laajoki K, Pavolov VP, Mamontov VP (1998) Geology and copper sulphide mineralization of the Salmagorskii ring igneous complex, Kola Peninsula, NW Russia. J Petrol 39:2033–2041Google Scholar
  158. Krishnamurthy P, Hoda SQ, Sinha RP, Banerje DC, Dwivedy KK (2000) Economic aspects of carbonatites in India. J Asian Earth Sci 18:229–235Google Scholar
  159. Kröner A (1985) Ophiolites and the evolution of tectonic boundaries in the late Proterozoic Arabian-Nubian shield of northeast Africa and Arabia. Precambr Res 27:277–300Google Scholar
  160. Kröner A, Stern RJ (2005) Pan-African orogeny. Encyclopedia of geology 1, Elsevier, Amsterdam, pp 1–12Google Scholar
  161. Kusky TM, Li JH (2003) Paleoproterozoic tectonic evolution of the North China Craton. J Asian Earth Sci 22:383–397Google Scholar
  162. Lang JR, Baker T, Hart CJR, Mortensen JK (2000) An exploration model for intrusion-related gold systems. SEG Newslett 40:1–15Google Scholar
  163. Lang JR, Baker T (2001) Intrusion-related gold systems: the present level of understanding. Miner Deposita 36:477–489Google Scholar
  164. Large RR (1975) Zonation of hydrothermal minerals at the Juno Mine, Tennant Creek Goldfield, central Australia. Econ Geol 70:1387–1413Google Scholar
  165. Large RR, Mumme WG (1975) Junoite, “wittite”, and related seleniferous bismuth sulfosalts from Juno Mine, Northern Territory, Australia. Econ Geol 70:369–383Google Scholar
  166. Latin D, Nory MJ, Tarzey RJE (1993) Magmatism in the Gregory rift, East Africa: evidence for melt generation by a plume. Jf Petrol 34:1007–1027Google Scholar
  167. Laznicka P (2006) Giant metallic deposits – future resources of industrial minerals. SpringerGoogle Scholar
  168. Le Bas MJ (1977) Carbonatite nepheline volcanism. John Wiley & Sons, New YorkGoogle Scholar
  169. Le Bas MJ (1989) Diversification of carbonatite. In: Bell K (ed) Carbonatites. Genesis and evolution. Unwin Hyman Ltd, Lond, pp 428–447Google Scholar
  170. Lehmann B (1982) Metallogeny of tin: magmatic differentiation versus geochemical heritage. Econ Geol 77:50–59Google Scholar
  171. Lehmann B (1990) Metallogeny of tin. Lecture notes in Earth Sciences. Springer, BerlinGoogle Scholar
  172. Lentz DR (ed) (2007) Special issue on iron oxide copper-gold deposits. Expl Min Geol 16(3–4)Google Scholar
  173. Loiselle MC, Wones DR (1979) Characteristic and origin of anorogenic granites. Geo Soc Am Abs with Programs 11:468Google Scholar
  174. Lurie J (1986) Mineralization of the Pilanesberg Alkaline Complex. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa, Vol II, Geol Soc S Afr, pp 2215–2228Google Scholar
  175. Macey P. Harris C (2006) Stable isotope and fluid inclusion evidence for the origin of the Brandberg West area Sn-W vein deposits, NW Namibia. Mineral Depos 41:671–690Google Scholar
  176. Mair JL, Goldfarb RJ, Craig AJ, Hart CJR, Marsh EE (2006) Geochemical constraints on the genesis of the Scheelite Dome intrusion-related gold deposit, Tombstone gold belt, Yukon, Canada. Econ Geol 101:523–553Google Scholar
  177. Mariano AN (1989a) Nature of economic mineralization in carbonatites and related rocks. In: Bell K (ed) Carbonatites – genesis and evolution. Unwin Hyman, London, pp 149–176Google Scholar
  178. Mariano AN (1989b) Economic geology of rare earth elements. In: Lipin BC, McKay CA, (eds) Geochemistry and mineralogy of rare earth elements. Rev Mineral 21. Min Soc Am, pp 309–337Google Scholar
  179. Mark G, Oliver NHS, Williams PJ, Valenta RK, Crookes RA (2000) The evolution of the Ernest Henry Fe-oxide-(Cu-Au) hydrothermal system. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, Aust Min Foundation, Adelaide, pp 123–136Google Scholar
  180. Mark G, Wilde A, Oliver NHS, Williams PJ, Ryan CG (2005) Modeling outflow from the Ernest Henry Fe oxide-Cu-Au deposit: implications for ore genesis and exploration. Geochem Expl 85:31–46Google Scholar
  181. Marschik R, Leveille RA, Martin W (2000) La Candelaria and the Punta del Cobre district, Chile: early Cretaceous iron-oxide Cu-Au(-Zn-Ag) mineralization. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits: a global perspective. Aus Miner Found, Adelaide, pp 163–175Google Scholar
  182. Marschik R, Fontignie D, Chiaradia M, Voldet P (2003) Geochemical and Nd-Sr-Pb-O isotope characteristics of granitoids of the early Cretaceous Copiapó plutonic complex (27° 30’ S), Chile. J South Am Earth Sci 16:381–398Google Scholar
  183. Marsh JS (1973) Relationship between transform directions and alkaline igneous rock lineaments in Africa and South America. Earth Planet Sci Lett 18:317–323Google Scholar
  184. Martin RF (2006) A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos 91:125–136Google Scholar
  185. Martin D McB, Thorne AM (2004) Tectonic setting and basin evolution of the Bangemall Supergroup in the northwestern Capricorn Orogen. Precambr Res 128:385–409Google Scholar
  186. Martini JEJ, Hammerback ECI (1998) Fluorspar. In: Wilson MGC, Anhaeusser CR (eds) The mineral resources of South Africa, Council Geoscie Handbk 16, pp 269–279Google Scholar
  187. McNeill GW (1989) A geochemical study of three Namibian igneous complexes. Unpubl BSc Hons thesis, Univ St AndrewsGoogle Scholar
  188. Miller McGR (ed) (1983) Evolution of the Damara orogen of South West Africa/Namibia. Geol Soc S Afr Spec Publ 11Google Scholar
  189. Miller McGR (1992) Stratigraphy. In: The mineral resources of Namibia. Geol Surv Namibia, 1st edn, pp 1. 2–1.34Google Scholar
  190. Miller CF, McDowell Meschter S, Mapes RW (2003) Hot and cold granite? Implications for zircon saturation temperatures and preservation of inheritance. Geology 31:529–532Google Scholar
  191. Milner SC (1988) The geology and geochemistry of the Etendeka Formation quartz-latites, Namibia. Unpubl PhD thesis, University of Cape TownGoogle Scholar
  192. Milner SC, Duncan AR, Ewart A (1992) Quartz-latite rheoignimbrite flows of the Etendeka Formation, northwestern Namibia. Bull Volcanol 54:200–219Google Scholar
  193. Milner SC, le Roex AP, O’Connor JM (1995) Age of Mesozoic igneous rocks in northwestern Namibia and their relationship to continental breakup. J Geol Soc London 152:97–104Google Scholar
  194. Mitchell AHG, Garson MS (1981) Mineral deposits and global geotectonic settings. Acad Press, New York, London, 405ppGoogle Scholar
  195. Mitchell RH (1989) Aspects of the petrology of kimberlites and lamproites: some definitions and distinctions, in Kimberlites and related rocks, Proceed 4th Int Kimberlite Conf, Perth, 1986, Geol Soc Aus Spec Publ 14, pp 7–45.Google Scholar
  196. Mitchell RH (1995) Kimberlite, orangeites, and related rocks. Plenum Press, New YorkGoogle Scholar
  197. Mohamed FH, El-Sayed MM (2007) Post-orogenic and anorogenic A-type fluorite-bearing granitoids, Eastern Desert, Egypt: petrogenetic and geotectonic implications. Chem Erde Geochem, doi:10:1016/j.chemer.2007.01.001Google Scholar
  198. Moore McM (1982) Mineral zonation near the granitic batholiths of southwest and northern England and some geological analogues. In Evans AM (ed) Metallization associated with acid magmatism, vol 6. John Wiley & Sons, Chichester, pp 229–241Google Scholar
  199. Murray CG (1990) Tasman Fold Belt in Queensland. Aust Inst Min Metall Monogr 14(2):1431–1450Google Scholar
  200. Mustard R (2004) Textural, mineralogical and geochemical variation in the zoned Timbarra Tablelands pluton, New South Wales. Aust J Earth Sci 51:385–405Google Scholar
  201. Neiva AMR (2007) Geochemistry of cassiterite and wolframite from tin and tungsten quartz veins in Portugal. Ore Geol Rev, doi:10.1016/j.oregeorev.2006.05.013Google Scholar
  202. Norman JW (1982) The origin of metals: a speculation. Min Mag 146:226–229Google Scholar
  203. O’Driscoll EST (1985) The application of lineament tectonics in the discovery of the Olympic Dam Cu-Au-U deposit, Roxby Downs, South Australia. Global Tect Metall 31:43–57Google Scholar
  204. Oreskes N, Einaudi MT (1990) Origin of REE-enriched hematite breccia at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia. Econ Geol 85:1–28Google Scholar
  205. Oreskes N, Einaudi MT (1992) Origin of hydrothermal fluids at Olympic Dam: preliminary results from fluid inclusions and stable isotopes. Econ Geol 87:64–90Google Scholar
  206. Oreskes N, Hitzman MW (1993) A model for the origin of Olympic Dam-type deposits. Geol Assoc Can Spec Pap 40:615–633Google Scholar
  207. Pallister JS, Stacey JS, Fischer LB, Premo WR (1987) Arabian shield ophiolites and late Proterozoic microplate accretion. Geology 15:320–323Google Scholar
  208. Paterson DJ, Ohmoto H, Solomon M (1981) Geologic setting and genesis of cassiterite-sulfide mineralization at Renison Bell, western Tasmania. Econ Geol 76:393–438Google Scholar
  209. Pavlova GG, Gushchina LV, Borovikov A, Borisenko AS, Obolensky AA (2004) Silver and antimony in hydrothermal solutions of Ag-Sb deposits. Russian Geol & Geophys 45:1186–1197Google Scholar
  210. Pavlova GG, Gushchina LV, Borovikov A, Borisenko AS, Palyanova G (2006) Forming conditions for Au-Sb and Ag-Sb ore according to thermodynamic modelling data. J Mater Sci 41:1557–1562Google Scholar
  211. Pearce J (1996) Sources and settings of granitic rocks. Episodes 19:120–125Google Scholar
  212. Peng P, Zhai M, Zhang HF, Guo JH (2005) Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mafic dikes. Inter Geol Rev 47:492–508Google Scholar
  213. Peng P, Zhai MG, Ernst RE, Guo JG, Liu F, Hu B (2008) A 1.78 Ga large igneous province in the North China Craton: the Xiong'er Volcanic Province and the North China Dyke Swarm. Lithos 101: 260–280Google Scholar
  214. Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669–673Google Scholar
  215. Pirajno F (1982) Geology, geochemistry, mineralisation and metal zoning of the McConnochie greisenised granite, Reefton district, Westland, New Zealand. N Z J Geol Geophys 28:187–191Google Scholar
  216. Pirajno F (1985) Porphyry Mo and greisen W metallogeny related to the Karamea Batholith, South Island, New Zealand. N Z J Geol Geophys 28:187–191Google Scholar
  217. Pirajno F (1990) The geology, geochemistry and mineralisation of the Erongo Volcanic Complex, Namibia. S Afr J Geol 93:485–504Google Scholar
  218. Pirajno F (1992) Hydrothermal mineral deposits – principles and fundamental concepts for the exploration geologist. Springer, BerlinGoogle Scholar
  219. Pirajno F (1994) Mineral resources of anorogenic alkaline complexes, Namibia: a review. Aus J Earth Sci 41:157–168Google Scholar
  220. Pirajno F (1998) Geology and mineral deposits of Namibia. Aus Inst Geoscie Bull 25:61–66Google Scholar
  221. Pirajno F (2000) Ore deposits and mantle plumes. Kluwer Academic Publishers, DordrechtGoogle Scholar
  222. Pirajno F (2004) Metallogeny in the Capricorn Orogen, Western Australia, the result of multiple ore-forming processes. Precambr Res 128:411–440Google Scholar
  223. Pirajno F, Bagas L (2008) A review of Australia's Proterozoic mineral systems and genetic models. Precambr Res Sp Iss, doi:10.1016/j.precamres.2007.05.008Google Scholar
  224. Pirajno F, Bentley PN (1985) Greisen-related scheelite, gold and sulphide mineralisation at Kirwans Hill and Bateman Creek, Reefton District, Westland, New Zealand. N Z J Geol Geophys 28:97–109Google Scholar
  225. Pirajno F, Jacob RE (1987) Sn-W metallogeny in the Damara Orogen, South West Africa/Namibia. S Afr J Geol 90:239–255Google Scholar
  226. Pirajno F, Petzel VFW, Jacob RE (1987) Geology and alteration-mineralisation of the Brandberg West Sn-W deposit, Damara Orogen, South West Africa/Namibia. S Afr J Geol 90:256–269Google Scholar
  227. Pirajno F, Smithies RH (1992) The FeO/(FeO+MgO) ratio of tourmaline: a useful indicator of spatial variations in granite-related hydrothermal mineral deposits. J Geochem Expl 42:371–381Google Scholar
  228. Pirajno F, Kinnaird JA, Fallick AE, Boyce AJ, Petzel VWF (1993) A preliminary regional sulphur isotope study of selected samples from mineral deposits of the Damara Orogen, Namibia. Comm Geol Surv Namib 8:81–97Google Scholar
  229. Pirajno F, Butt CRM, Winter E (1995) Gold enrichment in weathered carbonatite pyroclastics of the Kruidfontein Volcanic Complex, South Africa. S Afr J Geol 98:319–325Google Scholar
  230. Pirajno F, Phillips D, Armstrong RA (2000) Volcanology and eruptive histories of the Erongo Volcanic Complex and the Paresis Igneous Complex, Namibia: implications for mineral deposit styles. Commun Geol Surv Namibia 12:301–312Google Scholar
  231. Pitcher WS (1993) The nature and origin of granite. Blackie Academic & Professional, LondonGoogle Scholar
  232. Pollard PJ (1983) Magmatic and postmagmatic processes in the formation of rocks associated with rare-element deposits. Trans Inst Min Metall 92:B1–B9Google Scholar
  233. Pollard PJ (2001) Sodic(calcic) alteration in Fe oxide-Cu-Au districts: an origin via umixing of magmatic H2O-CO2-NaCl ± CaCl2-KCl fluids. Mineral Depos 36:93–100Google Scholar
  234. Pollard PJ (2006) An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold (IOCG) provinces. Mineral Depos 41:179–187Google Scholar
  235. Pollard PJ, Taylor RG, Cuff C (1983) Metallogeny of tin: magmatic differentiation versus geochemical heritage – a discussion. Econ Geol 78:543–545Google Scholar
  236. Pollard PJ, Taylor RG (1986) Progressive evolution of alteration and tin mineralization: controls by interstitial permeability and fracture-related tapping of magmatic fluid reservoirs in tin granites. Econ Geol 81:1795–1800Google Scholar
  237. Pollard PJ, Pichavant M, Charoy B (1987) Contrasting evolution of fluorine- and boron-rich tin systems. Mineral Depos 22:315–321Google Scholar
  238. Pollard PJ, Taylor RG, Cuff C (1988) Genetic modelling of greisen-style tin systems. In: Hutchison CS (ed) Geology of tin deposits in Asia and the Pacific. Springer, Berlin, pp 59–72Google Scholar
  239. Pollard PJ, Taylor RG, Tate NM (1989) Textural evidence for quartz and feldspar dissolution as a mechanism of formation for Maggs pipe, Zaaiplaats tin mine. Mineral Depos 24:210–218Google Scholar
  240. Porter TM (ed) (2000) Hydrothermal iron oxide copper-gold & related deposits: a global perspective. Aus Miner Found, Adelaide, AustGoogle Scholar
  241. Porter TM (ed) (2002) Hydrothermal iron oxide copper-gold & related deposits: a global perspective. Aus Miner Found, vol 2, Adelaide, AustGoogle Scholar
  242. Premoli C (1993) Mineral potential of Namibia. Aust Inst Min Metall Bull 3:22–27Google Scholar
  243. Raguin E (1965) Geology of granite. Interscience Publishers and John Wiley & Sons, LondonGoogle Scholar
  244. Ramsay WHR, Bierlein FP, Arne DC (1998) Mesothermal gold mineralisation in space and time. Ore Geol Rev Sp Iss 13 (1–5)Google Scholar
  245. Reeve JS, Cross KC, Smith RN, Oreskes N (1990) The Olympic dam copper-uranium-gold-silver deposit, South Australia. In: Hughes F (ed) Geology and mineral deposits of Australia and Papua New Guinea. Aust Inst Min Metall Monogr 14: 1009–1035Google Scholar
  246. Reynolds LJ (2000) Geology of the Olympic Dam Cu-U-Au-Ag-REE deposit. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global Perspective, Aus Min Foundation, Adelaide, pp 93–104Google Scholar
  247. Richardson JM, Bell K, Watkinson DH, Blemkisop J (1990) Genesis and fluid evolution of the East Kemptville greisen-hosted tin mine, southwestern Nova Scotia, Canada. Geol Soc Am Spec Pap 246:181–203Google Scholar
  248. Robert F (2001) Disseminated syenite-associated gold deposits in the Abitibi greenstone belt, Canada. Mineral Depos 36:503–516Google Scholar
  249. Roedder E (1984) Fluid inclusions. Reviews in Mineralogy, vol 12. Min Soc Am, 644ppGoogle Scholar
  250. Rogers JJW, Santosh M (2002) Configuration of Columbia, a Mesoproterozoic continent. Gondwana Res 5:5–22Google Scholar
  251. Rose AW, Burt DM (1979) Hydrothermal alteration. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. John Wiley & Sons, New York, pp 173–235Google Scholar
  252. Ross J, Jaques LA, Ferguson J, Green DH, O’Reilly SY, Danchin RV, Janse AJA (eds) (1989) Kimberlites and related rocks, vol 1 & 2. Geol Soc Aus Spec Publ 14Google Scholar
  253. Rozendaal A, Toros MS, Anderson JR (1986) The Rooiberg tin deposits, West-Central Transvaal. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, vol 2. Geol Soc S Afr, pp 1307–1328Google Scholar
  254. Rozendaal A, Misiewicz JE, Scheepers R (1995) The tin zone: sediment-hosted hydrothermal tin mineralization at Rooiberg, South Africa. Mineral Depos 30:178–187Google Scholar
  255. Ryan AJ (1998) Ernest Henry copper-gold deposit. In: Berkman DA, Mackenzie DH (eds) Geology of Australian and Papua New Guinea mineral deposits. Australas Inst Min Metall Monogr 22:759–768Google Scholar
  256. Santosh M, Omana PK (1991) Very high purity gold from lateritic weathering profiles of Nilambur, southern India. Geology 19:746–749Google Scholar
  257. Sawkins FJ, Sillitoe RH (eds) (1985) A special issue devoted to ore-hosted breccias. Econ Geol 80(6)Google Scholar
  258. Scheibner E, Veevers JJ (2000) Tasman fold belt. In: Veevers JJ (ed) Billion-year earth history of Australia and neighbours in Gondwanaland, GEMOC Press, Sydney, pp 154–234Google Scholar
  259. Schwartz MO, Rajah SS, Askury AK, Putthapiban P, Djaswadi S (1995) The Southeast Asian tin belt. Earth-Sci Rev 38:95–293Google Scholar
  260. Seltmann R, Borisenko AS, Pavlova GG (2007) Metallogeny of the southeastern Altai (Russia) and northwestern Mongolia ore district, Permian-Triassic boundary. Russian Academy of Sciences, IAGOD Guidebook of Field Excusion A, Int Symp Large Igneous Prov Asia, Novosibirsk.Google Scholar
  261. Shcherba GN (1970) Greisens. Int Geol Rev 12:114–255Google Scholar
  262. Sheppard S, Occhipinti SA, Nelson DR (2005) Intracontinental reworking in the Capricorn Orogen, Western Australia: the 1680–1620 Ma Mangaroon Orogeny. Aus J Earth Sci 52:443–460Google Scholar
  263. Sillitoe RH (1996) Granites and metal deposits. Episodes 19:126–133Google Scholar
  264. Sillitoe RH (2003) Iron oxide-copper-gold deposits: an Andean view. Mineral Depos 38:787–812Google Scholar
  265. Sillitoe RH, Thompson JFH (1998) Intrusion-related vein gold deposits: types, tectono-magmatic settings and difficulties of distinction from orogenic gold deposits. Res Geol 48:237–250Google Scholar
  266. Skirrow R (2006) Craton-scale controls and time-space distribution of IOCG and gold systems in the Gawler Craton. IOCG Workshop, Adelaide, 24 Feb 2006 http://www.ga.gov.au/image_cache/GA7791.pdf (last opened in April 2008)
  267. Skirrow RG, Walshe JL (2002) Reduced and oxidized Au-Cu-Bi iron oxide deposits of the Tennant Creek Inlier, Australia: an integrated geologic and chemical model. Econ Geol 97:1167–1202Google Scholar
  268. Smirnov VI (1976) Geology of mineral deposits. MIR, Moscow, 520 ppGoogle Scholar
  269. Smith MP (2007) Metasomatic silicate chemistry at the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China: contrasting chemistry and evolution of fenitising and mineralising fluids. Lithos 93:126–148Google Scholar
  270. Smith MP, Henderson P (2000a) Preliminary fluid inclusion constraints on fluid evolution in the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Econ Geol 95:1371–1388Google Scholar
  271. Smith MP, Henderson P (2000b) Preliminary fluid inclusions constraints on mineralising fluid composition and evolution in the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia. Econ Geol 95:1371–1388Google Scholar
  272. Smith MP, Henderson P, Campbell LS (2000) Fractionation of the REE during hydrothermal processes: constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochim Cosmochim Acta 64:3141–3160Google Scholar
  273. Smithies RH (1991). The geochemical evolution of three alkaline complexes in the Kubos-Bremem igneous province, southern Namibia. Unpubl. PhD Thesis, Rhodes UniversityGoogle Scholar
  274. Smithies RH, Marsh JS (1998) The Marinkas Quellen Carbonatite Complex, southern Namibia; carbonatite magmatism with an uncontaminated depleted mantle signature in a continental setting. Chem Geol 148:201–212Google Scholar
  275. Solomon M, Groves DI (1994) The geology and origin of Australia’s mineral deposits. Clarendon Press, OxfordGoogle Scholar
  276. Sørensen H (ed) (1974) The alkaline rocks. J Wiley & Sons, New YorkGoogle Scholar
  277. Stear WM (1977) The stratabound tin deposits and structure of the Rooiberg fragment. Trans Geol Soc S Afr 80:67–78Google Scholar
  278. Stolz AJ, Morrison RS (1994) Proterozoic igneous activity in the Tennant Creek region, Northern Territory, Australia, and its relationship to Cu-Au-Bi mineralization. Mineral Depos 29:261–274Google Scholar
  279. Storey BC, Alabaster T, Pankhurst RJ (eds) (1992) Magmatism and the causes of continental breakup. Geol Soc Lond Spec Publ 68Google Scholar
  280. Taylor RG (1979) Geology of tin deposits. Elsevier, AmsterdamGoogle Scholar
  281. Taylor R, Pollard PJ (1988) Pervasive hydrothermal alteration in tin-bearing granites and implications for the evolution of ore-bearing magmatic fluids. Can Inst Min Metall Spec Vol 39:86–95Google Scholar
  282. Thompson JFH, Sillitoe RH, Baker T, Lang JR, Mortensen JK (1999) Intrusion-related gold deposits associated with tungsten-tin provinces. Miner Deposita 34:323–334Google Scholar
  283. Thompson JFH, Newberry RJ (2000) Gold deposits related to reduced granitic intrusions. Rev Econ Geol 13:377–400Google Scholar
  284. Tomkins AG, Mavrogenes JA (2003) Generation of metal-rich felsic magmas during crustal anatexis. Geology 31:765–768Google Scholar
  285. Trumbull RB, Harris C, Frindt S, Wigand M (2004) Oxygen and neodymium isotope evidence for source diversity in Cretaceous anorogenic granites from Namibia and implications for A-type granite genesis. Lithos 73:21–40Google Scholar
  286. Tyler IM, Pirajno F, Bagas L, Myers JS, Preston WA (1998) The geology and mineral deposits of the Proterozoic in Western Australia. AGSO J Geol & Geophys 17:223–244Google Scholar
  287. Tyler N (1986) The origin of gold mineralization in the Pilgrim’s Rest goldfield, eastern Transvaal. Econ Geol Res Unit, Univ Witwatersrand Inf Circ 179Google Scholar
  288. Tyler R, Tyler N (1996) Stratigraphic and structural controls on gold mineralization in the Pilgrim’s Rest gold field, eastern Transvaal, South Africa. Precambr Res 79:141–169Google Scholar
  289. Vermaak CF, Von Gruenewaldt G (1986) Introduction to the Bushveld complex. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, vol 2. Geol Soc S Afr, pp 1021–1030Google Scholar
  290. Verwoerd WJ (1966) The carbonatites of South Africa and South West Africa. Geol Surv S Afr Handbk 6Google Scholar
  291. Verwoerd WJ (1986) Mineral deposits associated with carbonatites and alkaline rocks. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa, Geol Soc S Afr, pp 2173–2191Google Scholar
  292. Verwoerd WJ (1993) Special issue on carbonatites. S Afr J Geol 96(3)Google Scholar
  293. Verwoerd WJ, Retief EA, Prins P (2000) The Etanenoberg alkaline complex, Namibia. Commun Geol Surv Namibia 12:291–300Google Scholar
  294. Vigneresse JL (2004) A new paradigm for granite generation. Trans Roy Soc Edin Earth Sci 95:11–22Google Scholar
  295. Vigneresse JL (2007) The role of discontinuous magma inputs in felsic magma and ore generation. Ore Geol Rev 30:181–216Google Scholar
  296. Vladimirov AG, Vystavnoi SA, Titov AV, Rudnev SN, Dergachev VB, Annikova IYu, Tikunov YuV (1998) Petrology of early Mesozoic rare-metal granites of southern Gorny Altai. Russian Geol Geophys 39:909–924Google Scholar
  297. Von Gruenewaldt G, Strydom JH (1985) Geochemical distribution patterns surrounding tin-bearing pipes and the origin of the mineralizing fluids at the Zaaiplaats tin mine, Potgietersrus district. Econ Geol 80:1201–1211Google Scholar
  298. Walraven F (1985) Genetic aspects of the granophyric rocks of the Bushveld Complex. Econ Geol 80:1166–1180Google Scholar
  299. Wang J, Tatsumoto M, Li X, Premo WR, Chao ECT (1994) A precise 232Th-208Pb chronology of fine grained monazite: age of the Bayan Obo REE-Fe-Nb ore deposit, China. Geochim Cosmochim Acta 58:3155–3169Google Scholar
  300. Wang YJ, Fan WM, Zhang YH, Guo F, Zhang HF, Peng TP (2004) Geochemical, 40Ar/39Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800 Ma event of the North China Craton. Precambr Res 135:55–47Google Scholar
  301. Ward JHW, Wilson MGC (1998) Gold outside the Witwatersand Basin. In: Wilson MGC, Anhaeusser CR (eds) The mineral resources of South Africa, Council Geoscie Handbk 16, pp 350–386Google Scholar
  302. Watkinson DH, Wyllie PJ (1971) Experimental study of the join NaAlSiO4-CaCO3-H2O and the genesis of alkali rock-carbonatite complexes. J Petrol 12:357–378Google Scholar
  303. Wedeking MR, Large RR, Williams B (1989) Controls on high-grade mineralization at Tennant Creek, Northern Territory, Australia. Econ Geol Monogr 6:168–179Google Scholar
  304. Westra G, Keith SB (1981) Classification and genesis of stockwork molybdenum deposits. Econ Geol 76:844–873Google Scholar
  305. Whalen JB, Currie KL, Chappell BW (1987) A–type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petrol 95:407–419Google Scholar
  306. White RS (1997) Mantle plume origin for the Karoo and Ventersdorp flood basalts, South Africa. S Afr J Geol 100:271–282Google Scholar
  307. Wigand M, Schmitt A, Trumbull RB, Villa IM, Emmermann R (2004) Short-lived magmatic activity in an anorogenic subvolcanic complex: 40Ar/39Ar and ion microprobe U-Pb zircon dating of the Erongo, Damaraland, Namibia. J Volc Geoth Res 130:285–305Google Scholar
  308. Williams PJ (1998a) Metalliferous economic geology of the Mt Isa eastern succession, Queensland. Aust J Earth Sci 45:329–341Google Scholar
  309. Williams PJ (1998b) An introduction to the metallogeny of the McArthur River-Mount Isa-Cloncurry minerals province. Econ Geol 93:1120–1131Google Scholar
  310. Williams PJ, Skirrow RG (2000) Overview of iron oxide-copper-gold deposits in the Curnamona Province and Cloncurry District (Eastern Mount Isa Block), Australia. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits: a global perspective. Aus Miner Found, Adelaide, pp 105–122Google Scholar
  311. Williams PJ, Barton MD, Johnson DA, Fonbote L, De Haller A, Mark G, Oliver NHS, Marschick R (2005) Iron oxide copper-gold deposits: geology, space-time distribution and possible modes of origin. Econ Geol 100th Ann Vol:371–406Google Scholar
  312. Wilson MGC (1998) Copper. In: Wilson MGC, Anhaeusser CR (eds) The mineral resources of South Africa, Council Geoscie Handbk 16, pp 209–227Google Scholar
  313. Windley BF (1995) The evolving continents. 3rd edn, John Wiley & Sons, ChichesterGoogle Scholar
  314. Wingate MTD, Pirajno F, Morris PA (2004) The Warakurna large igneous province: a new Mesoproterozoic large igneous province in west-central Australia. Geology 32:105–108Google Scholar
  315. Woodall R (1993) The multidisciplinary approach to successful mineral exploration. SEG Newslett 14:1–11Google Scholar
  316. Woolley AR (2001) Alkaline rocks and carbonatites of the world – part 3: Africa. Geol Soc, LondGoogle Scholar
  317. Wright JH, Kwak TAP (1989) Tin-bearing greisens of Mount Bischoff, northwestern Tasmania, Australia. Econ Geol 84:551–574Google Scholar
  318. Wu FY, Sun DY, Li HM, Jahn BM, Wilde S (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187:143–173.Google Scholar
  319. Yang XM, Le Bas MJ (2004) Chemical composition of carbonate minerals from Bayan Obo, Inner Mongolia, China: implications for petrogenesis. Lithos 72:97–116Google Scholar
  320. Zaitsev AN, Sinai YUM, Shakhmuradya NAR, Lepekhina EN (1998) Association of pyrrhotite and pyrite in carbonatite series rock of Khibina alkaline massif. Zap Vser Mineral Obshchest 127(4):110–119 (in Russian)Google Scholar
  321. Zhao GC, Sun M, Wilde SA, Li SZ (2004) A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Sci Rev 67:91–123Google Scholar
  322. Zhao GC, Min S, Wilde SA, Li SZ (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambr Res 136:177–202Google Scholar
  323. Ziserman A, Bertraneu J, Jaujou M (1980) European mineral wealth. Episodes 1980:33–35Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Geological Survey of Western AustraliaEast PerthAustralia

Personalised recommendations