Singularity Free Path Planning for Parallel Robots

  • Samir Lahouar
  • Saïd Zeghloul
  • Lotfl Romdhane

Abstract

In this paper, we present a procedure to automatically generate the kinematic model of parallel mechanisms as well as an algorithm for their singularity free path planning. Singular positions are considered as obstacles that have to be bypassed while moving toward the goal. The 3-RPR planar parallel robot was taken as an example to illustrate the effectiveness of the procedure. This proposed method can be easily extended to other similar parallel mechanisms.

Key words

singularity path planning parallel robots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeles, J., Yang, G., Chen, I-M. (2003), Singularity analysis of three-legged, six-dof platform manipulators with URS legs. IEEE/ASME Transactions on Mechatronics 8(4), 469-475.CrossRefGoogle Scholar
  2. Clavel, R. (1988), DELTA, A fast robot with parallel geometry. In Proceedings 18th International Symposium on Industrial Robot, Lausanne, pp. 91-100.Google Scholar
  3. Cortés, J. (2003), Motion Planning Algorithms for General Closed-Chain Mechanisms. PhD Thesis, INP, Toulouse.Google Scholar
  4. Dasgupta, B., Mruthyunjaya, T. (1998), Singularity-free path-planning for the Stewart platform manipulator. Mechanism and Machine Theory 33(6), 711-725.CrossRefMathSciNetGoogle Scholar
  5. Dash, A.K., Chen, I-M., Yeo, S.H., Yang, G. (2005), Workspace generation and planning singularity-free path for parallel manipulators. Mechanism and Machine Theory 40, 776-805.MATHMathSciNetGoogle Scholar
  6. Goudali, A., Lallemand, J-P., Zeghloul, S. (1995), Espace de travail de la nouvelle structure 2-Delta. Revue d’Automatique et de Productique Appliquée 8(2/3), 205-210.Google Scholar
  7. Guanfeng, L., Yunjiang, L., Zexiang, L. (2003), Singularities of parallel manipulators: a geometric treatment. IEEE Transactions on Robotics and Automation 19(4), 579-594.CrossRefGoogle Scholar
  8. Hesselbach, S., Plitea, N., Frindt, M., Kusiek, A. (1998), A new parallel mechanism to use for cut-ting convex glass panels. In Advances in Robot Kinematics: Analysis and Control, J. Lenar či č , M.L. Husty (Eds.), Kluwer Academic Publishers, pp. 165-174.Google Scholar
  9. Lahouar, S., Zeghloul, S., Romdhane, L. (2006), Collision free path planning for multi-DoF manip-ulators. In Industrial Robotics: Theory, Modeling and Control, S. Cubero (Ed.), Pro Literatur Verlag, pp. 349-378.Google Scholar
  10. Li, H., Gosselin, C., Richard, M. (2006), Determination of maximal singularity-free zones in work-space of planar three-degree-of-freedom parallel mechanisms. Mechanism and Machine The-ory 41(10), 1157-1167.MATHCrossRefMathSciNetGoogle Scholar
  11. Merlet, J.-P. (2000), Parallel Robots, Kluwer Academic Publishers.Google Scholar
  12. Merlet, J.-P. (2001), A generic trajectory verifier for the motion planning of parallel robots. Trans-actions of the ASME 123(4), 510-515.MathSciNetGoogle Scholar
  13. Sen, D., Mruthyunjaya, T.S. (1998), A centro-based characterization of singularities in the work-space of planar closed-loop manipulators. Mechanism and Machine Theory 33(8), 1091-1104.MATHCrossRefGoogle Scholar
  14. Sen, T.S., Drasgupta, B., Mallik, A.K. (2003), Variational approach for singularity-free pathplanning of parallel manipulators. Mechanism and Machine Theory 38, 1165-1183.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Samir Lahouar
    • 1
  • Saïd Zeghloul
    • 1
  • Lotfl Romdhane
    • 2
  1. 1.Laboratoire de Mécanique de SolidesUniversité de PoitiersFuturoscope Chasseneuil CedexFrance
  2. 2.Laboratoire de Génie MécaniqueEcole Nationale d’Ingénieurs de SousseSousseTunisie

Personalised recommendations