Advertisement

A Screw Syzygy with Applications to Robot Singularity Computation

  • J. M. Selig
  • Peter Donelan

Abstract

A syzygy is a relation between invariants. In this paper a syzygy is presented between invariants of sequences of six screws under the action of the Euclidean group. This relation is useful in simplifying the computation of the determinant of a robot Jacobian and hence can be used to investigate the singularities of robot manipulators.

Key words

Jacobians determinants singularities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunch, J.R. and Parlett, B.N. (1971) Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numerical Analysis 8(4), 639-655.CrossRefMathSciNetGoogle Scholar
  2. Gibson, C.G. and Hunt, K.H. (1990) Geometry of screw systems I & II. Mechanism and Machine Theory 25(1), 1-27.CrossRefGoogle Scholar
  3. Hayes, M., Husty, M. and Zsombor-Murray, P.J. (2002) Singular configurations of wrist-partitioned 6R serial robots: A geometric perspective for users. Transactions of the CSME 26(1), 41-55.Google Scholar
  4. Merlet, J-P. (2000) Parallel Robots. Kluwer, Dordrecht.MATHGoogle Scholar
  5. Press, W.H., Teukolsky, S.A., Vetterling W.T. and Flannery B.P. (1992) Numerical Recipes in C, 2nd ed. Cambridge University Press, Cambridge U.K.MATHGoogle Scholar
  6. Stanisi ć , M.M. and Engelberth, J.W. (1988) A geometric description of manipulator singularities in terms of singular surfaces. In: Proceedings 1st International Workshop on Advances in Robot Kinematics, Ljubljana, Slovenia, pp. 132-141.Google Scholar
  7. Selig, J.M. (2005) Geometric Fundamentals of Robotics. Springer, New York.MATHGoogle Scholar
  8. Weyl, H. (1946) The Classical Groups. Princeton University Press, Princeton NJ.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • J. M. Selig
    • 1
  • Peter Donelan
    • 2
  1. 1.Faculty of Business, Computing and Information ManagementLondon South Bank UniversityLondonUK
  2. 2.School of Mathematics, Statistics and Computer ScienceVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations