Digital Mapping of Soil Classes in Rio de Janeiro State, Brazil: Data, Modelling and Prediction

  • M.L. Mendonça-Santos
  • H.G. Santos
  • R.O. Dart
  • J.G. Pares

Abstract

A soil database for Rio de Janeiro State was collated in Access, for a project on quantifying the magnitude, spatial distribution and organic carbon in the soils of Rio de Janeiro State (Projeto Carbono_RJ). The main activities were the search, selection, analysis and review of the data for each soil profile already described in the study area, the georeferencing of each soil profile (when spatial coordinates were not available) and the input of new soil profiles into a new interface. The Rio de Janeiro soil dataset now contains 731 soil profiles, 2744 soil horizons, and 48 soil attributes usually described at the soil survey process. From this soil dataset, only 431 soil profiles that were adequately geo-located have been used in this application. The dataset contains limited data for bulk density and hydraulic soil properties, among others. From this dataset, quantitative modelling and digital soil mapping have been completed experimentally at 90 m resolution, using soil data and predictor variables, such as satellite images, lithology, a prior soil map and a DEM and its derivates. This dataset, which is one of the more complete soil datasets in Brazil, is being used as a testbed for learning and teaching DSM, using a variety of methods based on the scorpan model (Embrapa, 2006). In the first instance, the soil dataset was used to predict soil classes at the Order level of the Brazilian Soil Classification System – SiBCS (Embrapa, 2006). Five models were built and their results were compared and mapped.

Keywords

Depression Beach Lithology Dinates Landsat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H. 1973. Information theory and an extension of maximum likelihood principle. In: B.N. Petrov and F. Csaki (Eds.), Second International Symposium on Information Theory. Akademia, Kiado, Budapest, pp. 267–281.Google Scholar
  2. Embrapa Solos. Centro Nacional de Pesquisa de Solos. 2006. Sistema Brasileiro de Classificação de Solos. (SiBCS) 2nd ed. 306p.Google Scholar
  3. Carvalho Filho, A., Lumbreras, J.F., Wittern, K.P., Lemos, A.L., Santos, R.D. dos, Calderano Filho, B., Calderano, S.B., Oliveira, R.P., Aglio, M.L.D., Souza, J.S. De, Chaffin, C.E. 2003. Mapa de reconhecimento de baixa intensidade dos solos do estado do Rio de Janeiro. Rio de Janeiro: Embrapa Solos, 2003. 1 mapa, color. Escala 1:250.000. Available at http://www.cnps.embrapa.br/solosbr/sigweb.html.Google Scholar
  4. EMBRAPA. Centro Nacional de Pesquisa de Solos. 1997. Manual de métodos de análises de solo. 2nd ed. Rio de Janeiro, 212 p.Google Scholar
  5. ESRI. 2004. Geoprocessing in ArcGIS, version 9.1. Redlands, CA, Environmental Systems Research Institute, Inc.Google Scholar
  6. Hastie, T., Tibshirani, R., Friedman, J. 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer. 533p.Google Scholar
  7. Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E. 2006. Hole-filled SRTM for the globe. Version 3. Available from the CGIAR-CSI SRTM 90 m Database: http://srtm.csi.cgiar.org.Google Scholar
  8. Lagacherie,P., McBratney, A.B. 2007. Spatial soil information systems and spatial soil inference systems: perspectives for digital soil mapping. In; Lagacherie, P., McBratney, A.B. and Voltz, M. (Eds.), Digital soil mapping: an introductory perspective. Developments in soil science vol. 31. Elsevier, Amsterdam, pp. 3–22, 600p.Google Scholar
  9. Leica Geosystems. 2003. ERDAS Tour Guide, version 8.5.GIS & Mapping, LLC, Atlanta, GA. 638p.Google Scholar
  10. Lumbreras, J.F., Naime, U.J., Carvalho Filho, A., Wittern, K.P., Shinzato, E., Dantas, M.E., Palmieri, F., Fidalgo, E.C.C., Calderano, S.B., Medina, A.I.M., Pimentel, J., Chagas, C.S. 2003. Zoneamento Agroecológico do Estado do Rio de Janeiro. Embrapa Solos. Boletim de Pesquisa e Desenvolvimento n.33. Emdrapa Solos, Rio de Janeiro. 113p.Google Scholar
  11. MacMillan, R.A. 2003. LandMapRfontsize510 selectfont square Software Toolkit- C++ Version 2003. User Manual. LandMapper Environmental Solutions Inc., Edmonton, AB. 110pp.Google Scholar
  12. McBratney, A.B., Mendonça-Santos, M.L., Minasny, B. 2003. On digital soil mapping. Geoderma 117, 3–52.Google Scholar
  13. Mendonça-Santos, M.L., Jacques, P.D., Coelho, M.R., Pimentel, J., Santos, H.G. dos, Almeida, P., Barbosa, E.L.de A., Costa, T.C. e C. Da, Ávila, R.M., Shinzato, E., Branco, P.C.M.P. de A. 2003. Mapeamento do Uso Atual e Cobertura Vegetal dos Solos do Estado do Rio de Janeiro. Boletim de Pesquisa e Desenvolvimento n. 22. Embrapa Solos, Rio de Janeiro. 44p.Google Scholar
  14. Mendonça-Santos, M.L., Santos, H.G. dos, Coelho, M.R., Pares, J.G. 2005. Caracterização de paisagens e solos representativos do Estado do Rio de Janeiro para fins de estimativa de estoques de carbono no solo. Boletim de Pesquisa e Desenvolvimento n. 66. Embrapa Solos, Rio de Janeiro. 80p.Google Scholar
  15. Minasny, B., McBratney, A.B., Whelan, B.M., 2002. VESPER version 1.6. Australian Centre for Precision Agriculture. McMillan Building A05, The University of Sydney, NSW.Google Scholar
  16. RuleQuest Research. 2003. See5/C5.0 version 1.20. RuleQuest Research Pty Ltd., Sydney, Australia. http://www.rulequest.com/see5-info.html.Google Scholar
  17. Rio de Janeiro. 2001. Geologia, geomorfologia, geoquímica, geofísica, recursos minerais, economia mineral, hidrogeologia, estudos de chuvas intensas, aptidão agrícola, uso e cobertura do solo, inventário de escorregamentos, diagnóstico geoambiental. Companhia de Pesquisa de Recursos Minerais – CPRM/EMBRAPA SOLOS/DRM-RJ. 1CD-rom.Google Scholar
  18. SAS Institute. 2005. JMP Start Statistics, version 6. Cary, North Carolina.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M.L. Mendonça-Santos
    • 1
  • H.G. Santos
  • R.O. Dart
  • J.G. Pares
  1. 1.Researcher at EMBRAPA –Brazilian Agricultural Research CorporationThe National Centre of Soil Research- CNPSRio de JaneiroBrazil

Personalised recommendations