Advertisement

Broad-Scale Soil Monitoring Through a Nationwide Soil-Testing Database

  • B. Lemercier
  • D. Arrouays
  • S. Follain
  • N.P.A. Saby
  • C. Schvartz
  • C. Walter

Abstract

Spatial variability of soil properties strongly influenced by human activity is not well documented by most soil surveys. Soil tests performed at farmers’ request represent a large capital of soil information. In France, the results of a large part of these soil tests are continuously gathered in a unique database, the national soil testing database (named BDAT). The aims of the project were to analyse the evolution of soil features within discrete entities over successive time periods and to test the potential of the BDAT for soil dynamic monitoring. Two illustrations are shown: spatial variability of soil pH at national scale, and evolution of soil phosphorus content at regional scale. A validation by census data on agricultural systems was also tested. Taking into account sampling and statistical bias, databases such as the BDAT appear to be relevant tools for soil properties monitoring and can be helpful for digital soil mapping.

Keywords

Soil Organic Carbon Soil Testing Soil Organic Carbon Stock Unique Database Soil Organic Carbon Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baxter, S.J., Oliver, M.A., Archer, J.R., 2006. The representative Soil Sampling Scheme of England and Wales: the spatial variation of topsoil nutrient status and pH between 1971 and 2001. Soil Use and Management, 22, 383–392.Google Scholar
  2. Bellamy, P.H., Loveland, P.J., Bradley, R.I., Lark, R.M., Kirk, G.J.D., 2005. Carbon losses from all soils across England and Wales 1978–2003. Nature, 437, 245–248.CrossRefGoogle Scholar
  3. Lemercier, B., Walter, C., Schvatz, C., Saby, N., Arrouays, D., Follain, S., 2006. Suivi des teneurs en carbone organique et en phosphore extractible dans les sols agricoles de trois régions françaises. Analyses à partir de la Base de Données des Analyses de Terre. Etude et Gestion des Sols, 13(3), 165–180 (in French).Google Scholar
  4. Lettens, S., Orshoven, J., Wesemael, B., Muys, B., Perrin, D., 2005. Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Global Change Biology, 11(12), 2128–2140.CrossRefGoogle Scholar
  5. McBratney, A.B., Mendonça Santos, M.L., Minasny, B., 2003. On digital soil mapping. Geoderma, 117, 3–52.CrossRefGoogle Scholar
  6. Saby, N., Schvartz, C., Walter, C., Arrouays, D., Lemercier, B., Roland, N., Squividant, H., 2004. Base de Données des Analyses de Terre : Procédure de collecte et résultats de la campagne 1995–2000. Etude et gestion des sols, 11(4), 235–253 (in French).Google Scholar
  7. Schvartz, C., Walter, C., Claudot, B., Bouédo, T., Aurousseau, P., 1997. Synthèse nationale des analyses de terre réalisées entre 1990 et 1994. 1. Constitution d’une banque de données cantonale. Etude et Gestion des Sols, 4(3), 191–204 (in French).Google Scholar
  8. Walter, C., Schvartz, C., Claudot, B., Bouédo, T., Aurousseau, P., 1997. Synthèse nationale des analyses de terre réalisées entre 1990 et 1994. 2. Descriptions statistique et cartographique de la variabilité des horizons de surface des sols cultivés. Etude et Gestion des Sols, 4(3), 205–220 (in French).Google Scholar
  9. Wheeler, D.M., Sparling, G.P., Roberts, A.H.C., 2004. Trends in some soil test data over a 14-years period in New Zealand. New Zealand Journal of Agriculture Research, 47, 155–166.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • B. Lemercier
    • 1
  • D. Arrouays
  • S. Follain
  • N.P.A. Saby
  • C. Schvartz
  • C. Walter
  1. 1.UMR Sol-Agro et hydrosystéme-SpatialisationINRA/Agrocampus RennesCS 84215France

Personalised recommendations