Digital Soil Mapping Technologies for Countries with Sparse Data Infrastructures

  • Budiman Minasny
  • Alex. B. McBratney
  • R. Murray Lark


This chapter reviews some hardware and software for digital soil mapping. By hardware we mean various kinds of sensor and instrument which can give us better soil and scorpan data, and by software we mean mathematical or statistical models that can improve our spatial predictions. There are two approaches for the development of hardware for acquiring soil information: the top-down, and the bottom-up. The top-down approach asks which technologies are available and which variables can we measure that are related to scorpan factors. The bottom-up approach starts from a problem that we systematically analyse so as to identify the information that is needed to solve it. We then tackle the technical problems of collecting this information, and only at the end move to developing the field technology. We evaluate various software approaches to improve spatial prediction of soil properties or soil classes. Finally, the implication of using data-mining tools for the production of digital soil maps is discussed.


Synthetic Aperture Radar Advance Very High Resolution Radiometer Advance Very High Resolution Radiometer Spatial Prediction Soil Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamchuk, V.I., Hummel, J.W., Morgan, M.T., Upadhyaya, S.K., 2004. On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture 44, 71–91.CrossRefGoogle Scholar
  2. Adamchuk, V.I., Lund, E.D., Sethuramasamyraja, B., Morgan, M.T., Dobermann, A., Marx, D.B., 2005. Direct measurement of soil chemical properties on-the-go using ion-selective electrodes. Computers and Electronics in Agriculture 48, 272–294.CrossRefGoogle Scholar
  3. Agbu, P.A., Feherenbacker, D.F., Jansen, I.J., 1990. Soil property relationships with SPOT satellite digital data in East Central Illinois. Soil Science Society of America Journal 54, 807–812.Google Scholar
  4. Barnes E.M., Baker, M.G., 2000. Multispectral data for mapping soil texture: Possibilities and limitations. Applied Engineering in Agriculture 16, 731–741.Google Scholar
  5. Ben-Dor, E., 2002. Quantitative remote sensing of soil properties. Advances in Agronomy 75, 173–243.CrossRefGoogle Scholar
  6. Bie, S.W., Beckett, P.H.T., 1973. Comparison of four independent soil series by air photo interpretation, Paphos Area (Cyprus). Photogrammetria 29, 189–202.CrossRefGoogle Scholar
  7. Breiman, L., 2001. Statistical modeling: The two cultures. With discussion. Statistical Science 16, 199–231.CrossRefGoogle Scholar
  8. Brown, D.J., Shepherd, K.D., Walsh, M.G., Mays, M.D., Reinsch, T.G., 2006. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 132, 273–290.CrossRefGoogle Scholar
  9. Bui, E.N., Henderson, B.L., Viergever, K., 2006. Knowledge discovery from models of soil properties developed through data mining. Ecological Modelling, 191, 431–446.CrossRefGoogle Scholar
  10. Bui, E.N., Moran, C.J., 2001. Disaggregation of polygons of surficial geology and soil maps using spatial modeling and legacy data. Geoderma 103, 79–94.CrossRefGoogle Scholar
  11. Carré, F., McBratney, A.B., Minasny, B., 2007. Estimation and potential improvement of the quality of legacy soil samples for digital soil mapping. Geoderma 141, 1–14.CrossRefGoogle Scholar
  12. Chikhaoui, M., Bonn, F., Bokoye, A.I., Merzouk A., 2006. Comparison of the ASTER and ETM plus captors for the cartography of the deterioration of soils with the help of the LDI index. Canadian Journal of Remote Sensing 32, 74–83.Google Scholar
  13. Christakos, G., 2000. Modern Spatiotemporal Geostatistics. Oxford University Press, New York.Google Scholar
  14. Cole, N.J., Boettinger, J.L., 2007. Pedogenic understanding raster classification methodology for mapping soils, Powder River Basin, Wyoming, USA. In: Lagacherie, P., McBraney, A.B., Voltz, M. (Eds.), Developments in Soil Science 31. Digital Soil Mapping: An Introductory Perspective. pp. 389–400. Elsevier, Amsterdam.Google Scholar
  15. Cook, S.E., Corner, R., Groves, P.R., Grealish, G.J., 1996. Use of airborne gamma radiometric data for soil mapping. Australian Journal of Soil Research 34, 183–194.CrossRefGoogle Scholar
  16. Corwin D.L., Lesch, S.M., 2005. Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture 46, 11–43.CrossRefGoogle Scholar
  17. Datt, B., McVicar, T.R., Van Niel, T.G., Jupp, D.L.B., Pearlman, J.S., 2003. Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE Transactions on Geoscience and Remote Sensing 41, 1246–1259.CrossRefGoogle Scholar
  18. Davis, J.L., Annan, P., 1989. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical Prospecting 37, 531–551.CrossRefGoogle Scholar
  19. EMBRAPA. 1981. Mapa de Solos do Brasil, escala 1:5,000,000. Serviço Nacional de Levantamento e Conservação de Solos, Rio de Janeiro.Google Scholar
  20. Gomez, C., Delacourt, C., Allemand, P., Ledru, P., Wackerle, R., 2004. Using ASTER remote sensing data set for geological mapping, in Namibia. Physics and Chemistry of the Earth 30, 97–108.Google Scholar
  21. Hastie, T., Tibshirani, R., Friedman, J., 2001. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer Series in Statistics. Springer-Verlag, New York.Google Scholar
  22. Huete, A., Justice, C., Liu, H., 1994. Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment 49, 224–234.CrossRefGoogle Scholar
  23. Lark, R.M., Cullis, B.R., Welham, S.J., 2006. On spatial prediction of soil properties in the presence of a spatial trend: The empirical best linear unbiased predictor (E-BLUP) with REML. European Journal of Soil Science 57, 787–799.CrossRefGoogle Scholar
  24. Lark. R.M., Webster, R., Bishop, T.F.A., 2007. Using expert knowledge with control of false discovery rate to select regressors for prediction of soil properties. Geoderma 138, 65–78.CrossRefGoogle Scholar
  25. Li, J.H., Chen, W.J., 2005. A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data. International Journal of Remote Sensing 26, 5051–5069.CrossRefGoogle Scholar
  26. Madeira Netto, J.S., Robbez-Masson, J-M., Martins, E., 2007. Visible–Nir hyperspectral imagery for discriminating soil types in the La Peyne watershed (France). In: Lagacherie, P., McBratney, A.B., Voltz, M. (Eds.), Developments in Soil Science 31. Digital Soil Mapping: An Introductory Perspective. pp. 225–240. Elsevier, Amsterdam.Google Scholar
  27. Maindonald, J., 1999. An inquiry into data mining. The New Zealand Statistical Association Conference, Victoria University of Wellington, 4–7 July 1999.∼ johnm/dm/dmpaper.htmlGoogle Scholar
  28. McBratney, A.B., Mendonça-Santos, M.L., Minasny, B., 2003. On digital soil mapping. Geoderma 117, 3–52.CrossRefGoogle Scholar
  29. McKenzie, N.J., Ryan, P.J., 1999. Spatial prediction of soil properties using environmental correlation. Geoderma 89, 67–94.CrossRefGoogle Scholar
  30. Minasny, B., McBratney, A.B., 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences 32, 1378–1388.CrossRefGoogle Scholar
  31. Minasny, B., McBratney, A.B., 2007. Incorporating taxonomic distance into spatial prediction and digital mapping of soil classes. Geoderma 142, 285–293.CrossRefGoogle Scholar
  32. O’Day, P.A., 1999. Molecular environmental chemistry. Reviews of Geophysics 37, 249–274.CrossRefGoogle Scholar
  33. Odeh, I.O.A., McBratney, A.B., 2000. Using AVHRR images for spatial prediction of clay content in the lower Namoi valley of eastern Australia. Geoderma 97, 237–254.CrossRefGoogle Scholar
  34. Pachepsky, Y.A., Rawls, W.J. (Eds.), 2004. Development of Pedotransfer Functions in Soil Hydrology. Developments in Soil Science 30. Elsevier.Google Scholar
  35. Palacios-Orueta, A., Ustin, S.L., 1996. Multivariate statistical classification of soil spectra. Remote Sensing of Environment 57, 108–118.CrossRefGoogle Scholar
  36. Selige, T., Böhner, J., Schmidhalter, U., 2006. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma 136, 235–244.CrossRefGoogle Scholar
  37. Tsvetsinskaya, E.A., Schaaf, C.B., Gao, F., Strahler, A.H., Dickinson, R.E., Zeng, X., Lucht, W., 2002. Relating MODIS-derived surface albedo to soils and rock types over Northern Africa and the Arabian peninsula. Geophysical Research Letters 29, 1353, 10.1029/2001GL014096.CrossRefGoogle Scholar
  38. Verhoef, A., 2004. Remote estimation of thermal inertia and soil heat flux for bare soil Agricultural and Forest Meteorology 123, 221–236.CrossRefGoogle Scholar
  39. Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J., Skjemstad, J.O., 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59–75.CrossRefGoogle Scholar
  40. Viscarra Rossel, R.A., Taylor, H.J., McBratney, A.B., 2007. Multivariate calibration of hyperspectral γ-ray energy spectra for proximal soil sensing. European Journal of Soil Science 58, 343–353.CrossRefGoogle Scholar
  41. Waiser, T.H., Morgan, C.L.S., Brown, D.J., Hallmark, C.T., 2007. In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy. Soil Science Society of America Journal 71, 389–396.CrossRefGoogle Scholar
  42. Wang, N., Zhang, N., Wang, M., 2006. Wireless sensors in agriculture and food industry – Recent development and future perspective. Computers and Electronics in Agriculture 50, 1–14.CrossRefGoogle Scholar
  43. Webster, R., Heuvelink, G.B.M., 2006. The Kalman filter for the pedologist’s tool kit. European Journal of Soil Science 57, 758–773.CrossRefGoogle Scholar
  44. Wilford, J.R., Bierwirth, P.N., Craig, M.A., 1997. Application of airborne gamma-ray spectrometry in soil/regolith mapping and applied geomorphology. AGSO Journal of Australian Geology & Geophysics 17, 201–216.Google Scholar
  45. Wong, M.T.F., Harper, R.J., 1999. Use of on-ground gamma-ray spectrometry to measure plant-available potassium and other topsoil attributes, Australian Journal of Soil Research, 37, 267–277.CrossRefGoogle Scholar
  46. Yamaguchi, Y. Kahle, A.B. Tsu, H. Kawakami, T. Pniel, M., 1998. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing 36, 1062–1071.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Budiman Minasny
    • 1
  • Alex. B. McBratney
  • R. Murray Lark
  1. 1.Faculty of Agriculture, Food & Natural ResourcesThe University of SydneyAustralia

Personalised recommendations