Skip to main content

Practical Challenges in Formulating Virtual Tests for Structural Composites

  • Conference paper
Mechanical Response of Composites

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 10))

Abstract

Taking advantage of major recent advances in computational methods and the conceptual representation of failure mechanisms, the modeling community is building increasingly realistic models of damage evolution in structural composites. The goal of virtual tests appears to be reachable, in which most (but not all) real experimental tests can be replaced by high fidelity computer simulations. The payoff in reduced cycle time and costs for designing and certifying composite structures is very attractive; and the possibility also arises of considering material configurations that are too complex to certify by purely empirical methods. However, major challenges remain, the foremost being the formal linking of the many disciplines that must be involved in creating a functioning virtual test. Far more than being merely a computational simulation, a virtual test must be a system of hierarchical models, engineering tests, and specialized laboratory experiments, organized to address the assurance of fidelity by applications of information science, model-based statistical analysis, and decision theory. The virtual test must be structured so that it can function usefully at current levels of knowledge, while continually evolving as new theories and experimental methods enable more refined depictions of damage.

To achieve the first generation of a virtual test system, we must pay special attention to unresolved questions relating to the linking of theory and experiment: how can we assure that damage models address all important mechanisms, how can we calibrate the material properties embedded in the models, and what constitutes sufficient validation of model predictions? The virtual test definition must include real tests that are designed in such a way as to be rich in the information needed to inform models; and model-based analyses of the tests are required to mine the information. To date these compelling issues have been greatly underserved by both the modeling and experimental communities. Model-based analysis of tests has been undertaken only in terms of very simple (linear or continuum) engineering concepts; information-rich tests for more complex damage mechanisms have not been defined; and in fact the information in which experiments need to be rich has not been stated. Specific challenges in designing experiments for informing virtual tests and some promising experimental methods are summarized here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham FF (2003) How fast can cracks move? A research adventure in materials failure using millions of atoms and big computers. Adv Phys 52:727-790

    Article  CAS  ADS  Google Scholar 

  2. Abraham FF, Walkup R, Gao H et al. (2002) Simulating materials failure by using up to one billion atoms and the world’s fastest computer: brittle fracture. Proc Natl Acad Sci USA 99:5777-5782

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Ashby MF (1992) Physical modelling or materials problems. Mat Sci Technol 8:102-111

    CAS  Google Scholar 

  4. Bao G, Suo Z (1992) Remarks on crack-bridging concepts. Appl Mech Rev 24:355-366

    Article  Google Scholar 

  5. de Borst R (2003) Numerical aspects of cohesive-zone models. Eng Fract Mech 70:1743-1757

    Article  Google Scholar 

  6. Buehler MJ (2006) Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci USA 103:12285-12290

    Article  CAS  Google Scholar 

  7. Buehler MJ (2006) Large-scale hierarchical modeling of nanoscale, natural and biological materials. J Comput Theor Nanosci 3:603-623

    CAS  Google Scholar 

  8. Buehler MJ, Gao H (2005) Ultra large scale atomistic simulations of dynamic fracture. In: Rieth M, Schommers W (eds) Handbook of Theoretical Computational Nanotechnology, Volume X, pp 1-41, American Scientific Publishers Ranch, CA

    Google Scholar 

  9. Cai W, Bulatov VV, Chang J et al. (2004) Dislocation core effects on mobility. In: Nabarro FNR, Hirth JP (eds) Dislocations in Solids, Volume 12, Chapter 64, Elsevier, Amsterdam

    Google Scholar 

  10. Camanho PP, D ávila CG, Pinho ST (2004) Fracture analysis of composite co-cured structural joints using decohesion elements. Fatigue Fract Eng Mat Struct 27:745-757

    Article  Google Scholar 

  11. 11. Carpinteri A(ed)(1999) Nonlinear Crack Models for Nonmetallic Materials. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  12. Carroll FE, Mendenhall MH, Traeger RH, Brau C et al. (2003) Pulsed tunable monochromatic X-ray beams from a compact source: New opportunities. Am J Roentgenol 181:1197-1202

    Google Scholar 

  13. Case SW, Reifsnider KL (1999) Mrlife12 theory manual - a strength and life prediction code for laminated composite materials. Technical report, Materials Response Group, Virginia Polytechnic Institute and State University

    Google Scholar 

  14. Corigliano A (1993) Formulation, identification and use of interface models in the numerical analysis of composite delamination. Int J Solids Struct 30:2779-2811

    Article  Google Scholar 

  15. Cox BN (1999) Constitutive model for a fiber tow bridging a delamination crack. Mech Compos Mat Struct 6:117-138

    Article  Google Scholar 

  16. Cox BN (2005) Snubbing effects in the pullout of a fibrous rod from a laminate. Mech Adv Mat Struct 12:85-98

    Article  Google Scholar 

  17. Cox BN, Marshall DB (1991) The determination of crack bridging forces. Int J Fract 49: 159-176

    Google Scholar 

  18. Cox BN, Marshall DB (1994) Concepts for bridged cracks in fracture and fatigue. Acta Metall Mater 42:341-363

    Article  Google Scholar 

  19. Cox BN, Marshall DB (1996) Crack initiation in brittle fiber reinforced laminates. J Am Ceram Soc 79:1181-1188

    Article  CAS  Google Scholar 

  20. Cox BN, Yang QD (2006) In quest of virtual tests for structural composites. Science 314:1102-1107

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Dawood TA, Shenoi RA, Sahin M (2007) A procedure to embed fibre Bragg grating strain sensors into GFRP sandwich structures. Compos Part A 38:217-226

    Article  CAS  Google Scholar 

  22. Dobashi K, Fukuasawa A, Uesaka M et al. (2005) Design of compact monochromatic tunable hard X-ray source based on X-band linac. Jpn J Appl Phys 44:1999-2005

    Article  CAS  ADS  Google Scholar 

  23. Dvorak GJ, Laws N (1987) Analysis of progressive matrix cracking in composite laminates. II - First ply failure. J Compos Mat 21:309-329

    Article  CAS  Google Scholar 

  24. Elices M, Guinea GV, Gomez J et al. (2002) The cohesive zone model: Advantages, limitations and challenges. Eng Fract Mech 69:137-163

    Article  Google Scholar 

  25. Emery T, Dulieu-Barton JM, Cunnigham PR (2005) Identification of damage in composite structures using thermoelastic stress analysis. Key Eng Mat 293-294:583-590

    Article  Google Scholar 

  26. Falk ML, Needleman A, Rice JR (2001) A critical evaluation of cohesive zone models of dynamic fracture. J de Phys IV 11:43-50

    Google Scholar 

  27. Fawcett A, Trostle J, Ward S (1997) 777 empennage certification approach. In: Scott ML (ed) 11th International Conference on Composite Materials, Gold Coast, Australia. Technomic Publishing, Lancaster, PA

    Google Scholar 

  28. Francis Rose LR (1987) Crack reinforcement by distributed springs. J Mech Phys Solids 35:383-405

    Article  MathSciNet  Google Scholar 

  29. Gonz ález C, Llorca J (2006) Multiscale modeling of fracture in fiber-reinforced composites. Acta Mater 54:4171-4181

    Article  CAS  Google Scholar 

  30. 30. Gumbsch P (2001) Brittle fracture and the breaking of atomic bonds. In: The Society for Materials Science, Osaka, Japan (JSMS) (ed) Materials Science for the 21st Century, Volume A, pp 50-58

    Google Scholar 

  31. Hampel FR, Ronchetti EM, Rousseeuw PJ et al. (2005) Robust Statistics: The Approach Based on Influence Functions. Wiley, New York

    Google Scholar 

  32. Thompson JB, Kindt JH, Drake B, Hansma HG, Morse DE, Hansma PK (2001) Bone indentation recovery time correlates with bond reforming time. Nature 414:773-776

    Article  CAS  PubMed  ADS  Google Scholar 

  33. vanden Heuvel PWJ, Peijs T, Young RJ (1997) Failure phenomena in two-dimensional multi-fibre microcomposites, 2. A raman spectroscopic study of the influence of inter-fibre spacing on stress concentrations. Compos Sci Technol 57:899-911

    Article  CAS  Google Scholar 

  34. Hild F, Roux S (2006) Digital image correlation: from displacement measurement to identification of elastic properties - a review. Strain 42:69-80

    Article  Google Scholar 

  35. Ho S, Suo Z (1992) Microcracks tunneling in brittle matrix composites driven by thermal expansion mismatch. Acta Metall Mater 40:1685-1690

    Article  CAS  Google Scholar 

  36. Ho S, Suo Z (1993) Tunneling cracks in constrained layers. J Appl Mech 60:890-894

    Article  Google Scholar 

  37. Khor KH, Buffiere JY, Ludwig W et al. (2004) In situ high resolution synchrotron X-ray tomography of fatigue crack closure mechanisms. J Phys Condens Matter 16:S3511-S3515

    Article  CAS  ADS  Google Scholar 

  38. Kortschot MT, Beaumont PWR (1990) Damage mechanics of composite materials: I -Measurements of damage and strength. Compos Sci Technol 39:289-301

    Article  Google Scholar 

  39. Kozhanov AI (1999) Composite Type Equations and Inverse Problems. VSP, Utrecht, The Netherlands

    Google Scholar 

  40. 40. Liang J, Huang R, Prevost JH, Suo Z (2002) Thin film cracking modulated by underlayer creep. Experimental Mechanics

    Google Scholar 

  41. Marder M (1999) Molecular dynamics of cracks. Comput Sci Eng 1:48-55

    Article  CAS  Google Scholar 

  42. Marshall DB, Morris WL, Cox BN et al. (1994) Transverse strengths and failure mechanisms in ti3al matrix composites. Acta Metall Mater 42:2657-2673

    Article  CAS  Google Scholar 

  43. Massab ò R, Mumm DR, Cox BN (1998) Characterizing mode II delamination cracks in stitched composites. Int J Fract 92:1-38

    Article  Google Scholar 

  44. Melnikov Y (1998) Influence Functions and Matrices. CRC Press, West Palm Beach, FL

    Google Scholar 

  45. Mohammed I, Lechti M (2000) Cohesive zone modeling of crack nucleation at biomaterial corners. J Mech Phys Solids 48:735-764

    Article  ADS  Google Scholar 

  46. Park HS (2005) Three-dimensional bridging scale analysis of dynamic fracture. J Comput Phys 207:588-609

    Article  ADS  Google Scholar 

  47. Prilepko AI, Orlovsky DG, Vasin IA (1999) Methods for Solving Inverse Problems in Mathematical Physics. Dekker, New York

    Google Scholar 

  48. Remmers JJC, de Borst R, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31:69-77

    Article  Google Scholar 

  49. Schellekens JCJ, de Borst R (1996) On the numerical modeling of edge delamination in composites. Key Eng Mater 121-122:131-60

    Article  Google Scholar 

  50. Shahwan KW, Waas AM (1997) Non-self-similar decohesion along a finite interface of unilaterally constrained delaminations. Proc Royal Soc Lond A 453:515-550

    Article  CAS  MathSciNet  ADS  Google Scholar 

  51. Stigh U (1988) Damage and crack growth analysis of the double cantilever beam specimen. Int J Fract 37:R13-R18

    Article  Google Scholar 

  52. Suo Z, Bao G, Fan B (1992) Delamination R-curve phenomena due to damage. J Mech Phys Solids 40:1-16

    Article  ADS  Google Scholar 

  53. Suo Z, Prevost JH, Liang J (2003) Kinetics of crack initiation and growth in organic-containing integrated structures. J Mech Phys Solids 51:2169-2190

    Article  ADS  Google Scholar 

  54. Tarantola A(2004) Inverse Problem Theory and Model Parameter Estimation. SIAM, Philadelphia, PA

    Google Scholar 

  55. Turrettini A (1996) Ph.D. thesis, University of California, Santa Barbara, CA

    Google Scholar 

  56. 56. Vlieks AE, Caryotakis G, Martin D et al. (2004) Compton X-ray source. In: EPAC 2004, pp 2837-2839, Lucerne, Switzerland

    Google Scholar 

  57. Wagner GJ, Liu WK (2003) Coupling of atomistic and continuum simulations using a bridging scale decomposition. J Comput Phys 190:249-274

    Article  ADS  Google Scholar 

  58. Weinan E, Engquist B, Li X et al. (2007) Heterogeneous multiscale methods: A review. Commun Comput Phys 2:367-450

    MathSciNet  Google Scholar 

  59. Wisnom MR, Chang FK (2000) Modelling of splitting and delamination in notched cross-ply laminates. Compos Sci Technol 60:2849-2856

    Article  Google Scholar 

  60. Yang QD, Cox BN (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133:107-137

    Article  Google Scholar 

  61. Yorozu M, Yang J, Okada Y, Yanagida T (2001) Short-pulse X-ray generation via Thomson scattering in 0 and 90 interactions. Jpn J Appl Phys 40:4228-4232

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Cox, B.N., Spearing, S.M., Mumm, D.R. (2008). Practical Challenges in Formulating Virtual Tests for Structural Composites. In: Mechanical Response of Composites. Computational Methods in Applied Sciences, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8584-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8584-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8583-3

  • Online ISBN: 978-1-4020-8584-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics