Quality Assessment in LES of a Compressible Swirling Mixing Layer

  • Sebastian B. Müller
  • Leonhard Kleiser
Part of the Ercoftac Series book series (ERCO, volume 12)

We apply large-eddy simulation (LES) to simulate the nonlinear evolution of a subsonic circular swirling mixing layer, a round jet surrounded by slow co-flow with an additional swirl component present only in the narrow shear layer. The growth of viscous spatial instabilities and transition to turbulence of the swirling mixing layer are investigated. LES results are assessed at different resolutions and compared with reference results from direct numerical simulation (DNS).


Large-eddy simulation Approximate deconvolution model Compressible flow Transition to turbulence Swirling mixing layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams NA, Shariff K (1996) A high-resolution hybrid compact-{ENO} scheme for shock-turbulence interaction problems. J Comput Phys 127(1):27–51zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Bayliss A, Class A, Matkowsky BJ (1995) Adaptive approximation of solutions to problems with multiple layers by Chebyshev pseudo-spectral methods. J Comput Phys 116(1):160–172zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Berland J, Bogey C, Bailly C Low-dissipation and low-dispersion fourth-order {R}unge-{K}utta algorithm. Comput Fluids 35(10):1459–1463Google Scholar
  4. 4.
    Bodony DJ (2004) Aeroacoustic prediction of turbulent free shear flows. PhD thesis, Stanford UniversityGoogle Scholar
  5. 5.
    Domaradzki JA, Adams NA (2002) Direct modelling of subgrid scales of turbulence in large eddy simulations. J Turbul 3, Art no 24Google Scholar
  6. 6.
    Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103(1):16–42zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Lu G, Lele SK (1999) Inviscid instability of compressible swirling mixing layers. Phys Fluids 11(2):450–461CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    Mohseni K, Colonius T (2000) Numerical treatment of polar coordinate singularities. J Comput Phys 157(2):787–795zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Müller SB (2007) Numerical investigations of compressible turbulent swirling jet flows. Diss. ETH No. 17375, ETH Zurich, Zurich, Switzerland. Available online from http://e-collection.ethbib.ethz.chGoogle Scholar
  10. 10.
    Müller SB, Kleiser L (2006) Viscous and inviscid spatial stability analysis of compressible swirling mixing layers. SubmittedGoogle Scholar
  11. 11.
    Müller SB, Kleiser L (2007) Large-eddy simulation of vortex breakdown in compressible swirling jet flow. Comp Fluids, to apppear. doi:10.1016/j.compfluid.2007.04.010Google Scholar
  12. 12.
    Singh KK, Mongeau L, Frankel SH, Gore JP (2007) Effect of co- and counterswirl on noise from swirling flows and flames. AIAA J 45(2):651–661CrossRefADSGoogle Scholar
  13. 13.
    Stolz S, Adams NA, Kleiser L (2001) The approximate deconvolution model for LES of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys Fluids 13(10):2985–3001CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sebastian B. Müller
    • 1
  • Leonhard Kleiser
    • 1
  1. 1.Institute of Fluid Dynamics, ETH Zurich8092 ZurichSwitzerland

Personalised recommendations