Skip to main content

Reliability of Large-Eddy Simulation of Nonpremixed Turbulent Flames: Scalar Dissipation Rate Modeling and 3D-Boundary Conditions

  • Chapter
  • 1821 Accesses

Part of the book series: Ercoftac Series ((ERCO,volume 12))

Abstract

The intricate coupling between the numerical discretization of scalar field transport and the modeling of unresolved sub-grid scale fluctuations of chemical species is discussed. It is shown how the closures for the sub-grid scale scalar dissipation rate combine modeling of small scale diffusion with two error terms measuring the lack of accuracy in the transport of scalar field fluctuations energy. Then, the need of accounting for the three-dimensional character of turbulent flows at boundaries of computational domains is illustrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baum M, Poinsot T, Thévenin D (1995) Accurate boundary conditions for multicomponent reactive flows. Journal of Computational Physics 116(2):247–261

    Article  MATH  ADS  Google Scholar 

  2. Bogey C, Bailly C (2007) An analysis of the correlations between the turbulent flow and the sound pressure fields of subsonic jets. Journal of Fluid Mechanics 583:71–97

    Article  MATH  ADS  Google Scholar 

  3. Bray KNC (1996) The challenge of turbulent combustion. Proceedings of Combustion Institute 26:1–26

    Article  Google Scholar 

  4. Cabra R, Chen JY, Dibble RW, Karpetis AN, Barlow RS (2005) Lifted methane-air jet flame in vitiated coflow. Combustion and Flame 143(4):491–506

    Article  Google Scholar 

  5. Domingo P, Vervisch L, Payet S, Hauguel R (2005) DNS of a premixed turbulent V-flame and LES of a ducted-flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combustion and Flame 143(4):566–586

    Article  Google Scholar 

  6. Domingo P, Vervisch L, Veynante D (2008) Large-eddy simulation of a lifted methane-air jet flame in a vitiated coflow. Combustion and Flame 152(3):{415–432}

    Article  Google Scholar 

  7. Ducros F, Comte P, Lesieur M (1996) Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. Journal of Fluid Mechanics 326:1–36

    Article  MATH  ADS  Google Scholar 

  8. Ducros F, Laporte F, Souléres T, Guinot V, Moinat P, Caruelle B (2000) High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. Journal of Computational Physics 161: 114–139

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Hixon R, Shih SH, Mankabadi RR (1995) Evaluation of boundary conditions for computational aeroacoustics. AIAA Journal 33(11):2006–2012

    Article  MATH  ADS  Google Scholar 

  10. Klein M, Meyers J, Geurts BJ (2008) Assessment of LES quality measures using the error landscape approach. In: Meyers J, Geurts BJ, Sagaut P (eds) Quality and Reliability of Large Eddy Simulation. Springer, Berlin Heidelberg New York

    Google Scholar 

  11. Lodato G, Domingo P, Vervisch L (2008) Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. Journal of Computational Physics 227(10):5105–5143

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Morinishi Y, Lund TS, Vasilyev OV, Moin P (1998) Fully conservative higher order finite difference schemes for incompressible flow. Journal of Computational Physics 143(1):90–124

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Nicoud F (1999) Defining wave amplitude in characteristic boundary conditions. Journal of Computational Physics 149:418–422

    Article  MATH  ADS  Google Scholar 

  14. Okong’o N, Bellan J (2002) Consistent boundary conditions for multicomponent real gas mixtures based on characteristic waves. Journal of Computational Physics 176(2):330–344

    Google Scholar 

  15. Poinsot T, Lele SK (1992) Boundary conditions for direct simulations of compressible viscous flows. Journal of Computational Physics 1(101):104–129

    Article  ADS  MathSciNet  Google Scholar 

  16. Polifke W, Wall C, Moin P (2006) Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow. Journal of Computational Physics 213(1):437–449

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Rudy DH, Strikwerda JC (1980) A nonreflecting outflow boundary condition for subsonic Navier–Stokes calculations. Journal of Computational Physics 36:55–70

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Sutherland JC, Kennedy CA (2003) Improved boundary conditions for viscous, reacting, compressible flows. Journal of Computational Physics 191(2):502–524

    Article  MATH  ADS  Google Scholar 

  19. Tam CKW (1998) Advances in numerical boundary conditions for computational aeroacoustics. Journal of Computational Acoustics 6(4):377–402

    Article  MathSciNet  Google Scholar 

  20. Thompson KW (1987) Time dependent boundary conditions for hyperbolic systems. Journal of Computational Physics 68:1–24

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Thompson KW (1990) Time dependent boundary conditions for hyperbolic systems, {II}. Journal of Computational Physics 89:439–461

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Vervisch L, Hauguel R, Domingo P, Rullaud M (2004) Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame. Journal of Turbulence 5, Art no 4

    Google Scholar 

  23. Yoo CS, Wang Y, Trouvé A, Im HG (2005) Characteristic boundary conditions for direct simulations of turbulent counterflow flames. Combustion Theory and Modeling 9(4):617–646

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vervisch, L., Lodato, G., Domingo, P. (2008). Reliability of Large-Eddy Simulation of Nonpremixed Turbulent Flames: Scalar Dissipation Rate Modeling and 3D-Boundary Conditions. In: Meyers, J., Geurts, B.J., Sagaut, P. (eds) Quality and Reliability of Large-Eddy Simulations. Ercoftac Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8578-9_19

Download citation

Publish with us

Policies and ethics