Modelling Coupled Mechanics, Moisture and Heat in Pavement Structures

  • Robert Charlier
  • Lyesse Laloui
  • Mihael Brenčič
  • Siguroður Erlingsson
  • Klas Hansson
  • Pierre Hornych
Part of the Geotechnical, Geological and Earthquake Engineering book series (GGEE, volume 5)


Different physical problems have been analysed in the preceding {chapters}: they relate to water transfer, to heat transfer, to pollutant transfer and to mechanical equilibrium. All these problems are governed by differential equations and boundary conditions but analytical solutions are, in general, unobtainable because of the complex interaction of the various aspects which are always present in real-world situations. In such circumstances, numerical modelling can give a valuable alternative methodology for solving such highly coupled problems. The first part of this chapter is dedicated to a brief statement of the finite element method for highly coupled phenomena. In the second part, a number of numerical simulations are summarised as an illustration of what could be done with modern tools. The chapter shows that it is possible to achieve realistic results although, at present, some simplification is often required to do so.


Finite element method multi-physics coupling partial differential equation examples of applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso, E., 1998, “Suction and moisture regimes in roadway bases and subgrades”, Proc. International Symposium on Subdrainage in Roadway Pavements and Subgrades, Granada, Spain, pp. 3–56 & 57–104.Google Scholar
  2. Alonso, E.E., Cañete, A. & Olivella, S., 2002, “Moisture transfer and deformation behaviour of pavements: effect of climate, materials and drainage”, Proc. 3rd International Conference on Unsaturated Soils, Recife, Brazil, 2, pp. 671–678.Google Scholar
  3. Apul, D., Gardner, K., Eighmy T., Linder, E., Frizzell T. & Roberson, R., 2005, “Probabilistic modeling of one-dimensional water movement and leaching from highway embankments containing secondary materials”, Environmental Engineering Science 22, pp. 156–169.CrossRefGoogle Scholar
  4. Apul, D., Gardner, K., Eighmy T., Frizzell T., Linder, E. & Roberson, R., 2003, “Use of Bayesian methods to estimate long term contaminant leaching in roadways”, in Proc. WASCON 2003, ed. G. Ortiz de Urbina & H. Goumons, ISCOWA/INASMET, San Sebastien, Spain, pp. 253–262.Google Scholar
  5. Charlier, R. & Radu, J.P., 2001, “Rétention et transfert des polluants chimiques solubles: mécanismes fondamentaux et modélisation numérique”, Traite de Mécanique et Ingénierie des Matériaux – MIM, in Géomécanique environnementale: risques naturels et patrimonie, ed. Sch11ler, B. & Delage, P., Editions Hermes.Google Scholar
  6. Charlier, R. & Habraken, A-M, 1990, “Numerical modellisation of contact with friction phenomena by the finite element method”, J. Computers & Geotechnics, 9(1&2), pp. 59–72.CrossRefGoogle Scholar
  7. Chazallon, C., Hornych, P., Mouhoubi, S., 2006, “An elastoplastic model for long term behaviour modelling of unbound granular materials for flexible pavements”, Int’l J. Geomechanics, ASCE, July/August, 6(4), pp. 279–289.CrossRefGoogle Scholar
  8. Coussy, O. & Ulm, F.J., 2001, “Basic concepts of durability mechanics of concrete structures”, Revue Française de Génie Civil, 5(6), pp. 897–919.Google Scholar
  9. Detournay E. & Cheng A.H.D., 1991, “Fundamental of poroelasticity”, in Comprehensive Rock Engineering, Practice and Projects, 2, J.A. Hudson ed., Pergamon Press, 1991.Google Scholar
  10. El Abd,. A., Hornych, P., Breysse, & D., Denis, A., 2005, “Prediction of permanent deformations of unbound pavement layers”, ${7}th$ Int. Conf. Bearing Capacity of Roads, Railways & Airfields, Trondheim, Norway.Google Scholar
  11. Erlingsson, S., 2007, “Numerical modelling of thin pavements response and distress development in a accelerated HVS test,” Int’l. J. Road Materials & Pavement Design, 8(4), pp. 719–744.CrossRefGoogle Scholar
  12. Gens, A., 2001, “Fundamentals of THM phenomena in saturated and unsaturated materials. General formulation. Thermal and hydraulic constitutive laws”, Paper given to ALERT Geomaterials Graduate School, ENSHMG, Grenoble, France.Google Scholar
  13. Flyhammar, P. & Bendz, D., 2003, “Vatten- och masstransporter i kantzonen av en vägkropp. Fält- och laboratoriestudier”, (Delrapport I. In Swedish). ISRN LUTVDG/TVTG-7026-SE, avdelningen för Teknisk Geologi, LTH.Google Scholar
  14. Gidel, G., Hornych, P., Chauvin, J.J., Breysse, D. & Denis, A., 2001, “Nouvelle approche pour l’étude des déformations permanentes des graves non traitées à l’appareil triaxial à chargements répétés”, Bulletin des LPC, °233, pp. 5–21.Google Scholar
  15. Hansson, K., Lundin, L-C & Šiminek, J., 2005, “Modelling water flow patterns in flexible pavements”, Transportation Research Record 1936, TRB, National Research Council, Washington, D.C., pp 133–141.Google Scholar
  16. Hansson, K., 2005, “Water and Heat Transport in Road Structures”, Ph. D. Thesis, Uppsala Universitet.Google Scholar
  17. Heck, J.V., Piau, J.M., Gramsammer, J.C., Kerzreho, J.P. & Odéon, H., 1998, “Thermo-visco-elastic modelling of pavements behaviour and comparison with experimental data from the LCPC testtrack”, Proc. 5th Conference on Bearing Capacity of Roads and Airfields, II, Trondheim, Norway, July, pp. 763–772.Google Scholar
  18. Heck, J.V., 2001a, “Module CVCR version expert”, Documentation du code de calcul César-LCPCGoogle Scholar
  19. Heck, J.V., 2001b, “Modélisation des déformations réversibles et permanentes des enrobés bitumineux – Application à l’orniérage des chaussées”, PhD Thesis, University of Nantes, France.Google Scholar
  20. Hicks, R.G., & Monismith, C.L., 1971, “Factors Influencing the Resilient Response of Granular Materials”, Highway Research Record 345, TRB, National Research Council, Washington, D.C., pp. 15–31.Google Scholar
  21. Hornych, P. & El Abd A., 2006, “Development and validation of a method of prediction of structural rutting of unbound pavement layers”, Report ° SAM 05-DE27, European Project SAMARIS, March, 94pp.Google Scholar
  22. Hornych, P., Kazai, A. & Piau, J.M., 1998, “Study of the resilient behaviour of unbound granular materials”, Proc. 5th Conf. Bearing Capacity of Roads & Airfields, III, Trondheim, Norway, July, pp. 1277–1287.Google Scholar
  23. Hornych, P., Kerzrého, J.P. & Salasca, S., 2002, “Prediction of the behaviour of a flexible pavement using finite element analysis with non-linear elastic and viscoelastic models”, 9th Int’l Conf. Asphalt Pavements, I, Copenhagen, August, p. I-84.Google Scholar
  24. Laloui, L., 2001, “Thermo-mechanical behaviour of soils”, Revue Française de Génie Civil, 5(6), pp. 809–843.CrossRefGoogle Scholar
  25. Li, X., Radu, J.P. & Charlier, R. 1997, “Numerical Modeling of Miscible Pollutant Transport by Groundwater in Unsaturated Zones”, Computer Methods & Advances in Geomechanics, Yuan (ed.), pp. 1255–1260.Google Scholar
  26. Mizoguchi, M. 1990, “Water, heat and salt transport in freezing soil”, Ph.D. thesis. (in Japanese), University of Tokyo. \bibitem{0000}Pruess, K., Oldenburg, C. & Moridis, G., 1999, “TOUGH2 users’s guide”, version 2.0, Laurence Berkeley National Laboratory, Univ. California, Earth Sciences Div’n.Google Scholar
  27. Schlumberger, 2000, “ECLIPSE, Technical Description”, Schlumberger.Google Scholar
  28. Thimus, J.F., Abousleiman, Y., Cheng, A.H.-D., Coussy, O. & Detournay, E., (eds.), 1998, “Poromechanics. A tribute to Maurice Biot”, A.A. Balkema, Rotterdam, 666pp.Google Scholar
  29. Turska, E. & Schrefler, B.A., 1993, “On convergence conditions of partitioned solution procedures for consolidation problems”, Comp. Meth. in Appl. Mech. & Eng., 106, pp. 51–63.CrossRefGoogle Scholar
  30. Zienkiewicz, O.C. & Taylor, R.L., 1989, “The Finite Element Method”, MacGraw-Hill Book Company, 2, ch. 12, 4th ed’n.Google Scholar
  31. Zienkiewicz, O.C., Paul, D.K. & Chan, A.H.C., 1988. “Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems”, Int. J. for Num. Meth. In Eng’g., 26, 1039–1055.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Robert Charlier
    • 1
  • Lyesse Laloui
  • Mihael Brenčič
  • Siguroður Erlingsson
  • Klas Hansson
  • Pierre Hornych
  1. 1.University of LiègeBelgium

Personalised recommendations