Skip to main content

Modelling Coupled Mechanics, Moisture and Heat in Pavement Structures

  • Chapter
Water in Road Structures

Abstract

Different physical problems have been analysed in the preceding {chapters}: they relate to water transfer, to heat transfer, to pollutant transfer and to mechanical equilibrium. All these problems are governed by differential equations and boundary conditions but analytical solutions are, in general, unobtainable because of the complex interaction of the various aspects which are always present in real-world situations. In such circumstances, numerical modelling can give a valuable alternative methodology for solving such highly coupled problems. The first part of this chapter is dedicated to a brief statement of the finite element method for highly coupled phenomena. In the second part, a number of numerical simulations are summarised as an illustration of what could be done with modern tools. The chapter shows that it is possible to achieve realistic results although, at present, some simplification is often required to do so.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso, E., 1998, “Suction and moisture regimes in roadway bases and subgrades”, Proc. International Symposium on Subdrainage in Roadway Pavements and Subgrades, Granada, Spain, pp. 3–56 & 57–104.

    Google Scholar 

  • Alonso, E.E., Cañete, A. & Olivella, S., 2002, “Moisture transfer and deformation behaviour of pavements: effect of climate, materials and drainage”, Proc. 3rd International Conference on Unsaturated Soils, Recife, Brazil, 2, pp. 671–678.

    Google Scholar 

  • Apul, D., Gardner, K., Eighmy T., Linder, E., Frizzell T. & Roberson, R., 2005, “Probabilistic modeling of one-dimensional water movement and leaching from highway embankments containing secondary materials”, Environmental Engineering Science 22, pp. 156–169.

    Article  Google Scholar 

  • Apul, D., Gardner, K., Eighmy T., Frizzell T., Linder, E. & Roberson, R., 2003, “Use of Bayesian methods to estimate long term contaminant leaching in roadways”, in Proc. WASCON 2003, ed. G. Ortiz de Urbina & H. Goumons, ISCOWA/INASMET, San Sebastien, Spain, pp. 253–262.

    Google Scholar 

  • Charlier, R. & Radu, J.P., 2001, “Rétention et transfert des polluants chimiques solubles: mécanismes fondamentaux et modélisation numérique”, Traite de Mécanique et Ingénierie des Matériaux – MIM, in Géomécanique environnementale: risques naturels et patrimonie, ed. Sch11ler, B. & Delage, P., Editions Hermes.

    Google Scholar 

  • Charlier, R. & Habraken, A-M, 1990, “Numerical modellisation of contact with friction phenomena by the finite element method”, J. Computers & Geotechnics, 9(1&2), pp. 59–72.

    Article  Google Scholar 

  • Chazallon, C., Hornych, P., Mouhoubi, S., 2006, “An elastoplastic model for long term behaviour modelling of unbound granular materials for flexible pavements”, Int’l J. Geomechanics, ASCE, July/August, 6(4), pp. 279–289.

    Article  Google Scholar 

  • Coussy, O. & Ulm, F.J., 2001, “Basic concepts of durability mechanics of concrete structures”, Revue Française de Génie Civil, 5(6), pp. 897–919.

    Google Scholar 

  • Detournay E. & Cheng A.H.D., 1991, “Fundamental of poroelasticity”, in Comprehensive Rock Engineering, Practice and Projects, 2, J.A. Hudson ed., Pergamon Press, 1991.

    Google Scholar 

  • El Abd,. A., Hornych, P., Breysse, & D., Denis, A., 2005, “Prediction of permanent deformations of unbound pavement layers”, ${7}th$ Int. Conf. Bearing Capacity of Roads, Railways & Airfields, Trondheim, Norway.

    Google Scholar 

  • Erlingsson, S., 2007, “Numerical modelling of thin pavements response and distress development in a accelerated HVS test,” Int’l. J. Road Materials & Pavement Design, 8(4), pp. 719–744.

    Article  Google Scholar 

  • Gens, A., 2001, “Fundamentals of THM phenomena in saturated and unsaturated materials. General formulation. Thermal and hydraulic constitutive laws”, Paper given to ALERT Geomaterials Graduate School, ENSHMG, Grenoble, France.

    Google Scholar 

  • Flyhammar, P. & Bendz, D., 2003, “Vatten- och masstransporter i kantzonen av en vägkropp. Fält- och laboratoriestudier”, (Delrapport I. In Swedish). ISRN LUTVDG/TVTG-7026-SE, avdelningen för Teknisk Geologi, LTH.

    Google Scholar 

  • Gidel, G., Hornych, P., Chauvin, J.J., Breysse, D. & Denis, A., 2001, “Nouvelle approche pour l’étude des déformations permanentes des graves non traitées à l’appareil triaxial à chargements répétés”, Bulletin des LPC, °233, pp. 5–21.

    Google Scholar 

  • Hansson, K., Lundin, L-C & Šiminek, J., 2005, “Modelling water flow patterns in flexible pavements”, Transportation Research Record 1936, TRB, National Research Council, Washington, D.C., pp 133–141.

    Google Scholar 

  • Hansson, K., 2005, “Water and Heat Transport in Road Structures”, Ph. D. Thesis, Uppsala Universitet.

    Google Scholar 

  • Heck, J.V., Piau, J.M., Gramsammer, J.C., Kerzreho, J.P. & Odéon, H., 1998, “Thermo-visco-elastic modelling of pavements behaviour and comparison with experimental data from the LCPC testtrack”, Proc. 5th Conference on Bearing Capacity of Roads and Airfields, II, Trondheim, Norway, July, pp. 763–772.

    Google Scholar 

  • Heck, J.V., 2001a, “Module CVCR version expert”, Documentation du code de calcul César-LCPC

    Google Scholar 

  • Heck, J.V., 2001b, “Modélisation des déformations réversibles et permanentes des enrobés bitumineux – Application à l’orniérage des chaussées”, PhD Thesis, University of Nantes, France.

    Google Scholar 

  • Hicks, R.G., & Monismith, C.L., 1971, “Factors Influencing the Resilient Response of Granular Materials”, Highway Research Record 345, TRB, National Research Council, Washington, D.C., pp. 15–31.

    Google Scholar 

  • Hornych, P. & El Abd A., 2006, “Development and validation of a method of prediction of structural rutting of unbound pavement layers”, Report ° SAM 05-DE27, European Project SAMARIS, March, 94pp.

    Google Scholar 

  • Hornych, P., Kazai, A. & Piau, J.M., 1998, “Study of the resilient behaviour of unbound granular materials”, Proc. 5th Conf. Bearing Capacity of Roads & Airfields, III, Trondheim, Norway, July, pp. 1277–1287.

    Google Scholar 

  • Hornych, P., Kerzrého, J.P. & Salasca, S., 2002, “Prediction of the behaviour of a flexible pavement using finite element analysis with non-linear elastic and viscoelastic models”, 9th Int’l Conf. Asphalt Pavements, I, Copenhagen, August, p. I-84.

    Google Scholar 

  • Laloui, L., 2001, “Thermo-mechanical behaviour of soils”, Revue Française de Génie Civil, 5(6), pp. 809–843.

    Article  Google Scholar 

  • Li, X., Radu, J.P. & Charlier, R. 1997, “Numerical Modeling of Miscible Pollutant Transport by Groundwater in Unsaturated Zones”, Computer Methods & Advances in Geomechanics, Yuan (ed.), pp. 1255–1260.

    Google Scholar 

  • Mizoguchi, M. 1990, “Water, heat and salt transport in freezing soil”, Ph.D. thesis. (in Japanese), University of Tokyo. \bibitem{0000}Pruess, K., Oldenburg, C. & Moridis, G., 1999, “TOUGH2 users’s guide”, version 2.0, Laurence Berkeley National Laboratory, Univ. California, Earth Sciences Div’n.

    Google Scholar 

  • Schlumberger, 2000, “ECLIPSE, Technical Description”, Schlumberger.

    Google Scholar 

  • Thimus, J.F., Abousleiman, Y., Cheng, A.H.-D., Coussy, O. & Detournay, E., (eds.), 1998, “Poromechanics. A tribute to Maurice Biot”, A.A. Balkema, Rotterdam, 666pp.

    Google Scholar 

  • Turska, E. & Schrefler, B.A., 1993, “On convergence conditions of partitioned solution procedures for consolidation problems”, Comp. Meth. in Appl. Mech. & Eng., 106, pp. 51–63.

    Article  Google Scholar 

  • Zienkiewicz, O.C. & Taylor, R.L., 1989, “The Finite Element Method”, MacGraw-Hill Book Company, 2, ch. 12, 4th ed’n.

    Google Scholar 

  • Zienkiewicz, O.C., Paul, D.K. & Chan, A.H.C., 1988. “Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems”, Int. J. for Num. Meth. In Eng’g., 26, 1039–1055.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Charlier, R., Laloui, L., Brenčič, M., Erlingsson, S., Hansson, K., Hornych, P. (2009). Modelling Coupled Mechanics, Moisture and Heat in Pavement Structures. In: Dawson, A. (eds) Water in Road Structures. Geotechnical, Geological and Earthquake Engineering, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8562-8_11

Download citation

Publish with us

Policies and ethics