Water Influence on Mechanical Behaviour of Pavements: Experimental Investigation

  • Cane Cekerevac
  • Susanne Baltzer
  • Robert Charlier
  • Cyrille Chazallon
  • Sigurur Erlingsson
  • Beata Gajewska
  • Pierre Hornych
  • Cezary Kraszewski
  • Primož Pavšič
Part of the Geotechnical, Geological and Earthquake Engineering book series (GGEE, volume 5)


This chapter presents laboratory and in-situ experimental techniques used to describe the mechanical behaviour of pavement material at different saturation stages. The use of repeated triaxial load testing to obtain stiffness characteristics as well as the ability of the material to withstand accumulation of permanent deformation during cyclic loading is considered. For unsaturated soils, in addition to mechanical variables, it is shown that a moisture/suction control should be added. Several techniques are described to assist in this. A brief presentation of model parameters and tests needed for model calibration are introduced. Evaluation of pavement structural capacity based on deflection measurements with non-destructive testing equipment are presented. Finally, some examples of laboratory and in-situ measurement are shown.


Laboratory testing suction control repeated triaxial test CBR test parameter calibration field testing laboratory and in-situ experimental results 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AASHTO, 2000, “Determining the resilient modulus of soils and aggregate materials”, standard: T 307-99 in Standard Specifications for Transportation Materials and Methods of Sampling and Testing, 20th ed’n., Am. Assoc. State Highway & Transportation Eng’rs., Washington, DC.Google Scholar
  2. Brown, S.F., 1996, “Soil mechanics in pavement engineering”, Geotechnique 46(3), pp. 382–426.Google Scholar
  3. Brüll, A., 1983, “Effets mécaniques de l’eau interstitielle – Détermination des modules complexes de déformation longitudinale et de cisaillement des sols en fonction de la succion”, Centre de Recherches Routières, Bruxelles, Belgique, 180pp.Google Scholar
  4. CEN, 2002, “Aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction”, Comité Européen de Normalisation, European standard EN 13242.Google Scholar
  5. CEN, 2004, “Unbound and hydraulically bound mixtures – Part 7: Cyclic load triaxial test for unbound mixtures”, Comité Européen de Normalisation, European standard EN 13286-7.Google Scholar
  6. COST Action 325, 1997, “New Road Monitoring equipment and Methods”, Final Report of the Action, Reference EUR 17547, European Commission, Directorate General Transport.Google Scholar
  7. Cui, Y.-J., 1993, “Etude du comportement d’un limon compacté non saturé et de sa modélisation dans sun cadre élastoplastique”. Thèse de doctorat de l’Ecole nationale des Ponts et Chaussées, Paris.Google Scholar
  8. Cuisinier, O., & Laloui, L., 2004, “Fabric evolution during hydro-mechanical loading of compacted silt”, Int’l J. Numerical & Analytical Methods in Geomech., 28, pp. 483–499.CrossRefGoogle Scholar
  9. Delage, P., 2001, “Experimental techniques used in investigation of coupled THMC behaviour of geomaterials”, in Environmental Geomechanics, ed. Charlier, R. & Gens, A., Revue française de genie civil, 5(6), pp. 777–796.Google Scholar
  10. Delage, P., Suraj de Silva, G.P.R. & De Laure, E., 1987, “Un novel appareil triaxial pour les sols non saturés”, Proc. 9th Europ. Conf. Soil Mech. & Foundation Eng’g., 1, pp. 26–28.Google Scholar
  11. Delage, P., Howat, M.D. & Cui, Y.J., 1998, “The relationship between suction and swelling properties in a heavily compacted unsaturated clay”, Engineering Geology, 50, pp. 31–48.CrossRefGoogle Scholar
  12. Dineen, K. & Burland, J., 1995, “A new approach to osmotically controlled oedometer testing”, in Proc. 1st Int’l Conf. Unsaturated Soils, Eds. Alonso, E.E. & Delage, P., Balkema/Press des Ponts et Chaussées, Paris, 2, pp. 459–465.Google Scholar
  13. Direkcija Republike Slovenije za ceste, 2002, “Technical specification for roads”: TSC 06.630:2002, Lastnost voznih povrsin Podajnost, Direkcija Republike Slovenije za ceste,Ljubljana.Google Scholar
  14. Dynatest, 1989, “ELMOD/ELCON, Evaluation of Layer Moduli and Overlay Design”, User’s Manual, Dynatest Engineering, Denmark.Google Scholar
  15. Edwards, J.P., Thom, N.H., & Fleming, P.R., 2004, “Development of a simplified test for unbound aggregates and weak hydraulically bound materials utilising the NAT”, in Pavements Unbound (proc. $6^\mathrm{th}$ Int’l. Symp. Unbound Aggregates in Roads, UNBAR6), pp. 3–12, Balkema, Leiden.Google Scholar
  16. Ekblad, J., 2004, “Influence of Water on Resilient Properties of Coarse Granular Materials”, Licenciate Thesis, KTH Civil and Architectural Engineering, Stockholm, Sweden, 107pp.Google Scholar
  17. Ekblad, J. & Isacsson, U., 2006, “Influence of water on resilient properties of coarse granular materials”, Road Materials and Pavement Design, 7(3), pp. 369–404.CrossRefGoogle Scholar
  18. Erlingsson, S., 2007, “Numerical Modelling of Thin Pavements Behaviour in Accelerated HVS Tests”, Int’l. J. Road Mat’ls & Pavement Design, 8(4), pp. 719–744.CrossRefGoogle Scholar
  19. Erlingsson, S. & Magnusdottir, B., 2002, “Dynamic Triaxial Testing of Unbound Granular Base Course Materials,” Proc. $6 th$ Int’l Conf. Bearing Capacity of Roads, Railways & Airfields, Lisbon, Portugal, pp. 989–1000.Google Scholar
  20. Erlingsson, S., 2000, “Dynamic triaxial testing of unbound base course materials”. Proc. XIII Nordic Geotech.l Conf., NGM 2000, Finnish Geotechnical Society, Helsinki, pp. 69–76.Google Scholar
  21. Gomes-Correia, G., Hornych, P & Akou, Y., 1999, “Review of models and modelling of unbound granular materials”. In G. Gomes-Correia (ed.), Proceedings of an international workshop on modelling and advanced testing for unbound granular materials, Lisbon, Balkema, pp. 3–15.Google Scholar
  22. Head, K.H., 1994, “Manual of Soil Laboratory Testing; Volume 2: Permeability, Shear Strength and Compressibility Tests”, John Wiley & Sons, Inc., 454pp.Google Scholar
  23. Highways Agency, 1999, “Structural Assessment Methods”, HD 29/94, Design Manual for Roads & Bridges, HMSO, London.Google Scholar
  24. Hornych P., Hameury, O. & Paute, J.L., 1998, “Influence de l’eau sur la comportement mécanique des graves non traitées et des sols supports de chaussées”, Symposium Int’l AIPCR sur le Drainage des Chaussées, PIARC/AIPCR, Grenada, Spain, November, pp. 249–257.Google Scholar
  25. Kassif, G. & Ben Shalom, A., 1971, “Experimental relationship between swell pressure and suction”, Géotechnique, 21(3), pp. 245–255.CrossRefGoogle Scholar
  26. Komorik, A., Livneh, M. & Smucha, S., 1980, “Shear strength and swelling of clays under suction”, Proc. 4th Int’l Conf. Expansive Soils, Denver, 1, pp. 206–226.Google Scholar
  27. Korkiala-Tanttu, L. & Dawson, A.R., 2007, “Relating Full-Scale Pavement Rutting to Laboratory Permanent Deformation Testing”, Int’l. Jnl. Pavement Eng., 8(1), pp. 19–28.CrossRefGoogle Scholar
  28. Krarup, J., 1995, “Bearing Capacity and Water, Part III: Measured Pavement Performance”, Danish Road Institute, note 253.Google Scholar
  29. Laloui, L., Péron, H., Geiser, F., Rifa’i, A. & Vulliet, L., 2006, “Advances in volume measurement in unsaturated triaxial tests”, Soils and Foundations, 46(3), pp. 341–350.Google Scholar
  30. Marcial, D., Delage, P. & Cui, Y.J., 2002, “On the high stress compression of bentonites, Canadian Geotech. J., 39, pp. 812–820.CrossRefGoogle Scholar
  31. Pavšič, P., 2006, “Influence of water on mechanical behaviour of soils and aggregates”, in Active geotechnical design in infrastructure development, edited by Logar, J., Gaberc, A., and Majes, B., Slovensko geotehniško društvo (Slovenian Geotechnical Society), Ljubljana, 2, pp. 109–111.Google Scholar
  32. Petkovšek, A., Kokot, D., Leben, B. & Pavšič, P., 2003, “Influence of seasonal moisture and temperature changes in unbound layers on bearing capacity and deformability of pavements: research report (2000–2003)”, Final Report, (Sezonski vplivi spreminjanja vlage in temperature v nevezanih plasteh na nosilnost in deformabilnost voziščne konstrukcije: razvojno-raziskovalna naloga (2000–2003), končno poročilo razvojno raziskovalnega projekta), Gradbeni inštitut ZRMK, Zavod za Gradbeništvo Slovenije, Ljubljana.Google Scholar
  33. Péron, H., Hueckel, T. & Laloui, L., 2007, “An improved volume measurement in determining soil water retention curve”, Geotech. Testing J., 30(1), pp. 1–8.Google Scholar
  34. Qian, L, Ye, W. & Chen, B., 2006, “Soil-Water Characteristic Curves and Permeability of Shanghai Soft Soils”, in Unsaturated Soils 2006, Proc. 4th Int’l. Conf. Unsaturated Soils, Eds. Miller, G.A., Zapata, C.E., Houston, S.L. & Fredlund, D.G., Am. Soc. Civil Eng’rs., Geotech. Special Publ’n. 147, pp. 1571–1582.Google Scholar
  35. Semmelink, CJ, Jooste, FJ & de Beer, M, 1997, “Use of the K-mould in determination of the elastic and shear properties of road materials for flexible pavements”, 8th Int. Conf. Asphalt Pavements, II, August, Seattle, Washington, USA, pp. 1643–58.Google Scholar
  36. Sharp, K.G., Vuong, B.Y., Rollings, R.S., Baran, E. & Metcalf, J., 1999, “The Performance of Lateritic Gravel Pavements”, Proc. 1st Acclerated Pavement Testing Conf., Reno, Nevada, Paper CS11-02, 21pp.Google Scholar
  37. Standards Australia, 1995, “Determination of the Resilient Modulus and Permanent Deformation of Granular Unbound Materials”, Australian Standard, AS 1289.6.8.1.Google Scholar
  38. Vuong, B., Sharp, K.G., Baran, E. & Vertessy, N.J., 1994, “The Performance of a Fine-Grained Marginal Material Under Accelerated Loading,” Proc. 17th Australian Road Research Conf., Part 2, Australian Road Research Board, Victoria, Australia, pp. 145–164.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Cane Cekerevac
    • 1
  • Susanne Baltzer
  • Robert Charlier
  • Cyrille Chazallon
  • Sigurur Erlingsson
  • Beata Gajewska
  • Pierre Hornych
  • Cezary Kraszewski
  • Primož Pavšič
  1. 1.Switzerland

Personalised recommendations