Advertisement

Physiological and Ecological Characteristics of Blue-Green Algae in Lake Taihu

  • Guang Gao
Part of the Monographiae Biologicae book series (MOBI, volume 87)

Keywords

River Mouth Alkaline Phosphatase Activity Algal Bloom Heterotrophic Bacterium Dissolve Organic Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alldredge, A. L., U. Passow & B. E. Logan, 1993. The abundance and significance of a class of large transparent organic particles in the ocean. Deep-Sea Research I 40: 1131–1140.CrossRefGoogle Scholar
  2. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & T. F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.CrossRefGoogle Scholar
  3. Becquevort, S., V. Rousseau & C. Lancelot, 1998. Major and comparable roles for free-living and attached bacteria in the degradation of Phaeocystis derived organic matter in Belgian coastal water of the North Sea. Aquatic Microbial Ecology 14: 39–48.CrossRefGoogle Scholar
  4. Berman, T., 1970. Alkaline phosphates and phosphorus availability in Lake Kinneret. Limnology and Oceanography 24: 541–547.Google Scholar
  5. Biddanda, B. A., 1985. Microbial synthesis of macro particulate matter. Marine Ecology Progress Series 20: 241–251.CrossRefGoogle Scholar
  6. Boavida, M. J. & R. T. Heath, 1983. Are the phosphatases released by Daphnia magna components of its food? Limnology and Oceanography 29: 641–645.Google Scholar
  7. Brunberg, A., 1999. Contribution of bacteria in the mucilage of Microcystis spp. to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiology Ecology 29:13–22.CrossRefGoogle Scholar
  8. Caiola, M., 1991. Bdellovibrio-like bacteria in Microcystis aeruginosa. Algological Studies 64: 369–376.Google Scholar
  9. Carney, J. J. & J. J. Elser, 1990. The strength of zooplankton-phytoplankton coupling in relation to trophic state. In: Tilzer M. M. & C. Serruya (eds.), Ecology of large lakes. New York: Springer-Verlag, 615–631.Google Scholar
  10. Cembella, A. D., N. J. Anita&P. J. Harrison, 1984. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 2. CRC Critical Reviews in Microbiology 11: 13–81.PubMedCrossRefGoogle Scholar
  11. Chróst, R. J., 1986. Algal-bacterial metabolic coupling in the carbon and cycle in lake. In: Meguar, F. & M. Gantar (eds.), Perspective in microbial ecology. Ljubljana: Slovene Society for Microbiology, pp. 360–366.Google Scholar
  12. Chróst, R. J., 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chróst, R. J. (ed.), Microbial enzymes in aquatic environments. New York: Springer-Verlag, 29–59.Google Scholar
  13. Chróst, R. J. & J. Overbeck, 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake Pluβsee (north German eutrophic lake). Microbial Ecology 13: 229–248.CrossRefGoogle Scholar
  14. Chróst, R. J., R. Wcislo & G. Z. Halemejko, 1986. Enzymatic decomposition of organic matter by bacteria in a eutrophic lake. Archiv für Hydrobiologie 107: 145–165.Google Scholar
  15. Chróst, R. J., U. Münster, H. Rai, D. Albercht, P. K. Witzel & J. Overbeck, 1989. Photosynthetic production and exoenzymatic degradation of organic matter in euphotic zone of a eutrophic lake. Journal of Plankton Research 11: 223–242.CrossRefGoogle Scholar
  16. Dakhama, A., J. Noüe & M. C. Lavoie, 1993. Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa. Journal of Applied Phycology 5: 297–306.CrossRefGoogle Scholar
  17. Ducklow, H. W., D. L. Kirchman, H. L. Quinby, C. A. Carlson & H. G. Dam, 1993. Stocks and dynamics of bacterioplankton carbon during the spring bloom in the eastern North Atlantic Ocean. Deep-Sea Research II 40: 245–263.CrossRefGoogle Scholar
  18. Gao, G., X. Y. Gao & B. Q. Qin, 2000. Experimental study on the ${\mathrm{PO}4}3-$ threshold of the alkaline phosphatase activity in Taihu Lake. Journal of Lake Sciences 12(4): 353–359 (In Chinese with English abstract).Google Scholar
  19. Gu, Y. F., Y. Luo, W. Y. Ma, Z. Y. Zhou & H. J. Cai, 2000. Effects of temperature, organic carbon, nitrogen and phosphate on the growth of Bacillus sp. isolated from Microcystis aeruginosa. Chinese Journal of Applied and Environment Biology 6(1): 86–89 (In Chinese with English abstract).Google Scholar
  20. Hantke, B., P. Fleischer, I. Domany, M. Koch, P. Pleβ, M. Wiendl&A. Melzer, 1996. P-release from DOP by phosphatase activity in comparison to P excretion by zooplankton. Studies in hardwater lakes of different trophic level. Hydrobiologia 317: 151–162.CrossRefGoogle Scholar
  21. Havens, K. E., 2001. Complex analyses of plankton structure and function. The Scientific World Journal 1: 119–132.Google Scholar
  22. Healey, F. P., 1973. Characteristics of phosphorus deficiency in Anabaena. Journal of Phycology 9: 383–394.Google Scholar
  23. Healey, F. P., 1978. Physiological indicators of nutrient deficiency in algae. Mitteilungen der Internatinalen Vereinigung für Limnologie 21: 34–41.Google Scholar
  24. Herndl, G. J., 1988. Ecology of amorphous aggregations (marine snow) in the Northern Adriatic Sea. II. Microbial density and activity in marine snow and its implication to overall pelagic processes. Marine Ecology Progress Series 48: 265–275.CrossRefGoogle Scholar
  25. Herndl, G. J., 1992. Marine snow in the Northern Adriatic Sea: possible causes and consequences for a shallow ecosystem. Marine Microbial Food Webs 6: 149–172.Google Scholar
  26. Jamet, D., C. Amblard & J. Devaux, 1997. Seasonal changes in alkaline phosphatase activity of bacteria and microalgae in Lake Pavin (Massif Central, France). Hydrobiologia 347: 185–195.CrossRefGoogle Scholar
  27. Jones, J. G., 1972. Studies on freshwater bacteria: association with algae and alkaline phosphatase activity. The Journal of Ecology 60: 59–75.CrossRefGoogle Scholar
  28. Kuenzler, E. J. & J. P. Perras, 1965. Phosphatase of marine algae. Biological Bulletin 128: 271–284.CrossRefGoogle Scholar
  29. Lian, Y. W., Y. L. Wang, T. L. Zhen & H. S. Hong, 1999. Advance in the research on interaction between red tide algae and bacteria. Marine Sciences 1: 35–37 (In Chinese with English abstract).Google Scholar
  30. Liu, L. L., Y. F. Gu, Y. Luo, W. Q. Ma, Z. Y. Zhou & H. J. Cai, 2000. On the growth and phosphorous metabolism of bacterium isolated from Microcystis aeruginosa in Taihu Lake. Journal of Lake Sciences 12(4): 373–378 (In Chinese with English abstract).Google Scholar
  31. Looij, A. V. & B. Riemann, 1993. Measurements of bacterial production in coastal marine environments using leucien: application of a kinetic approach to correct for isotope dilution. Marine Ecology Progress Series 102: 97–104.CrossRefGoogle Scholar
  32. Overbeck, J., 1991. Early studies on ecto-and extracellular enzymes in aquatic environments. In: Chróst, R. J. (ed.), Microbial enzymes in aquatic environments. New York: Springer-Verlag, 1–5.Google Scholar
  33. Petterson, K., 1980. Alkaline phosphatase activity and algal surplus phosphorus and phosphorus-deficiency indicators in Lake Erken. Archiv für Hydrobiologie 89: 54–87.Google Scholar
  34. Pomeroy, L. R.,2001. Caught in the food web: complexity made simple? Scientia Marina 65(suppl 2): 31–40.Google Scholar
  35. Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.Google Scholar
  36. Porter, K.G., H. Paerl, R. Hodson, M. Pace, J. Priscu, B. Riemann, D. Scavia & J. Stockner, 1988. Microbial interactions in lake food webs. In: Carpenter, S. R. (ed.), Complex interactions in lake communities. New York: Springer-Verlag, 209–227.Google Scholar
  37. Posch, T. & H. Arndt, 1996. Uptake of sub-micrometer and micrometer-sized detrital particles by bacterivorous and ommivorous ciliates. Aquatic Microbial Ecology 10: 45–53.CrossRefGoogle Scholar
  38. Qin, X. M. & J. Z. Zou, 1997. Study on the effects of N, P, Fe-EDTA, Mn on the growth of a red tide dinoflagellate Scripsiella trochoidea. Oceanologia et Limnologia Sinica 28(6): 594–597 (In Chinese with English abstract).Google Scholar
  39. Reichardt, W., 1971. Catalytic mobilization of phosphate in lake water and by Cyanophyta. Hydrobiologia 38: 377–394.Google Scholar
  40. Reichardt, W., J. Overbeck & L. Steubing, 1967. Free dissolved enzymes in lake water. Nature (London) 216: 1345–1347.CrossRefGoogle Scholar
  41. Reim, R. L., M. S. Shane & R. E. Cannon, 1974. The characterization of a Bacillus capable of blue-green bactericidal activity. Canadian Journal of Microbiology 20: 981–986.PubMedGoogle Scholar
  42. Rhee, G. Y., 1973. A continuous culture study of phosphate uptake, growth rate and polyphosphates in Scenedesmus sp. Journal of Phycology 9: 495–506.Google Scholar
  43. Richardson, L. L. & K. D. Stolzenbach, 1995. Phytoplankton cell size and the development to microenvironments. FEMS Microbiology Ecology 16: 185–192.CrossRefGoogle Scholar
  44. Rivkin, R. B. & E. Swift, 1979. Diel and vertical patterns of alkaline phosphatase activity in the oceanic dinoflagellate Pyrocystis noctiluca. Limnology and Oceanography 34: 107–116.Google Scholar
  45. Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.PubMedCrossRefGoogle Scholar
  46. Shanks, A. L. & D. Trent, 1979. Marine snow: microscale nutrient patches. Limnology and Oceanography 24: 850–854.Google Scholar
  47. Sherr, E. B. & B. F. Sherr, 1987. High rates of consumption of bacteria by pelagic ciliates. Nature (London) 235: 710–711.CrossRefGoogle Scholar
  48. Sherr, E. B. & B. F. Sherr, 1988. Role of microbes in pelagic food web: a revised concept. Limnology and Oceanography 33: 225–1227.CrossRefGoogle Scholar
  49. Sherr, E. B. & B. F. Sherr, 2000. Marine microbes: an overview. In: Kirchman, D. L. (ed.), Microbial ecology of the oceans. New York: Wiley-Liss, 13–46.Google Scholar
  50. Simon, M., H. P. Grossart, B. Schweitzer & H. Ploug, 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology 28: 175–211.CrossRefGoogle Scholar
  51. Sommaruga, R.&R. D. Robarts, 1997. The significance of autotrophic and heterotrophic picoplankton in hypertrophic ecosystems. FEMS Microbiology Ecology 24: 187–200.CrossRefGoogle Scholar
  52. Sorokin, Y. I., 1999. Aquatic microbial ecology. Leiden: Backhuys Publishers.Google Scholar
  53. Stewart, A. G. & R. G. Wetzel, 1982. Phytoplankton contribution to alkaline phosphatase activity. Archiv für Hydrobiologie 93: 265–271.Google Scholar
  54. Stockner, J. G. & K. G. Porter, 1988. Microbial food webs in freshwater planktonic ecosystem. In Carpenter, S. R. (ed.), Complex interactions in lake communities. New York: Springer-Verlag, 69–97.Google Scholar
  55. Wetzel, R. G., 2001. Limnology: lake and river ecosystem, 3rd edition. London: Academic Press.Google Scholar
  56. Worm, J. & M. Søndergaard, 1998. Dynamics of heterotrophic bacteria attached to Microcystis spp. (Cyanobacteria). Aquatic Microbial Ecology 14: 19–28.CrossRefGoogle Scholar
  57. Wu, C. H., X. R. Wang & H. Sun, 1997. Establishment of models between the growth of Selenastrum capricornutum and several phosphorus fractions in the lake water. Environmental Chemistry 16(4): 341–347 (In Chinese with English abstract).Google Scholar
  58. Wynne, D. & G. Y. Rhee, 1986. Changes in alkaline phosphatase activity and phosphate uptake in P-limited phytoplankton, induced by light intensity and spectral quality. Hydrobiologia 160: 173–178.CrossRefGoogle Scholar
  59. Wynne, D., B. Kaplan & T. Berman, 1991. Phosphorus activities in Lake Kinneret phytoplankton. In: Chróst, R. J. (ed.), Microbial enzymes in aquatic environments. New York: Springer-Verlag, 220–226.Google Scholar
  60. Zhao, Y. J. & Y. D. Liu, 1996. Possible microbial control on the adverse impacts of algae: current information about the relationship between algae and microbes. Acta Hydrobiologica Sinica 20(2): 471–475 (In Chinese with English abstract).Google Scholar
  61. Zhou, Y. Y. & X. Y. Zhou, 1997. Seasonal variation in kinetic parameters of alkaline phosphatase activity in a shallow Chinese freshwater lake (Donghu Lake). Water Research 31: 1232–1235.CrossRefGoogle Scholar
  62. Zhou, Z. Y., Y. Luo, W. Q. Ma & H. J. Cai, 1998. Identification and determination of growth curve of four bacterium isolated from Taihu Lake. Journal of Lake Sciences 10(4): 59–62 (In Chinese with English abstract).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Guang Gao
    • 1
  1. 1.State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography and Limnology Chinese Academy of SciencesNanjing 210008P. R. China

Personalised recommendations