Advertisement

MicroRNA and Erythroid Differentiation

  • Mei Zhan
  • Chao-Zhong Song

MicroRNAs (miRNAs) regulate diverse cellular functions by acting as sequence-specific regulators of gene expression. We have investigated miRNA expression profiles in erythroid cells at different stages of maturation and the regulation of erythroid differentiation by specific miRNAs. We found that more than one hundred miRNAs were expressed in erythroid cells. The majority of them showed changes in their expression levels during erythroid differentiation. Further analysis revealed that the overall miRNA expression levels are increased in more mature erythroid cells compared with less mature erythroid cells. Among the miRNAs that are expressed in erythroid cells, miR-451 was most significantly upregulated during erythroid maturation. Functional studies using gain of function and loss of function approaches showed that miR-451 is associated with both human and mouse erythroid maturation. In conclusion, dynamic changes in miRNA expression occurred during erythroid differentiation, with an overall increase in the levels of miRNAs upon terminal differentiation of erythroid cells. MiR-451 may play a role in promoting erythroid differentiation.

Keywords

Erythroid differentiation erythropoiesis miRNA expression profile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allawi, H. T., Dahlberg, J. E., Olson, S., Lund, E., Olson, M., Ma, W. P., Takova, T., Neri, B. P., and Lyamichev, V. I. (2004). Quantitation of microRNAs using a modified invader assay. RNA 10, 1153-1161.CrossRefPubMedGoogle Scholar
  2. 2.
    Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M. J., Tuschl, T., and Margalit, H. (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33, 2697-2706.CrossRefPubMedGoogle Scholar
  3. 3.
    Alvarez-Garcia, I., and Miska, E. A. (2005). MicroRNA functions in animal development and human disease. Development 132, 4653-4662.CrossRefPubMedGoogle Scholar
  4. 4.
    Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355.CrossRefPubMedGoogle Scholar
  5. 5.
    Babak, T., Zhang, W., Morris, Q., Blencowe, B. J., and Hughes, T. R. (2004). Probing micro-RNAs with microarrays: tissue specificity and functional inference. RNA 10, 1813-1819.CrossRefPubMedGoogle Scholar
  6. 6.
    Barad, O., Meiri, E., Avniel, A., Aharonov, R., Barzilai, A., Bentwich, I., Einav, U., Gilad, S., Hurban, P., Karov, Y., et al. (2004). MicroRNA expression detected by oligonucleotide micro-arrays: system establishment and expression profiling in human tissues. Genome Res 14, 2486-2494. CrossRefPubMedGoogle Scholar
  7. 7.
    Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.CrossRefPubMedGoogle Scholar
  8. 8.
    Baskerville, S., and Bartel, D. P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241-247.CrossRefPubMedGoogle Scholar
  9. 9.
    Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37, 766-770.CrossRefPubMedGoogle Scholar
  10. 10.
    Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R. H., and Cuppen, E. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21-24.CrossRefPubMedGoogle Scholar
  11. 11.
    Boyle, W. (1968). An extension of the 51Cr-release assay for the estimation of mouse cyto-toxins. Transplantation 6, 761-764.CrossRefPubMedGoogle Scholar
  12. 12.
    Braasch, D. A., and Corey, D. R. (2001). Locked nucleic acid (LNA): fine-tuning the recogni-tion of DNA and RNA. Chem Biol 8, 1-7.CrossRefPubMedGoogle Scholar
  13. 13.
    Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99, 15524-15529.CrossRefPubMedGoogle Scholar
  14. 14.
    Calin, G. A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S. E., Iorio, M. V., Visone, R., Sever, N. I., Fabbri, M., et al. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353, 1793-1801.CrossRefPubMedGoogle Scholar
  15. 15.
    Calin, G. A., Garzon, R., Cimmino, A., Fabbri, M., and Croce, C. M. (2006). MicroRNAs and leukemias: how strong is the connection? Leuk Res. 30, 653-655.CrossRefPubMedGoogle Scholar
  16. 16.
    Calin, G. A., Liu, C. G., Sevignani, C., Ferracin, M., Felli, N., Dumitru, C. D., Shimizu, M., Cimmino, A., Zupo, S., Dono, M., et al. (2004). MicroRNA profiling reveals distinct signa-tures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101, 11755-11760.CrossRefPubMedGoogle Scholar
  17. 17.
    Castoldi, M., Schmidt, S., Benes, V., Noerholm, M., Kulozik, A. E., Hentze, M. W., and Muckenthaler, M. U. (2006). A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12, 913-920.CrossRefPubMedGoogle Scholar
  18. 18.
    Chang, K. H., Nelson, A. M., Cao, H., Wang, L., Nakamoto, B., Ware, C. B., and Papayannopoulou, T. (2006). Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood 108, 1515-1523.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., Barbisin, M., Xu, N. L., Mahuvakar, V. R., Andersen, M. R., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33, e179.CrossRefPubMedGoogle Scholar
  20. 20.
    Chen, C. Z., Li, L., Lodish, H. F., and Bartel, D. P. (2004). MicroRNAs modulate hematopoi-etic lineage differentiation. Science 303, 83-86.CrossRefPubMedGoogle Scholar
  21. 21.
    Chen, C. Z., and Lodish, H. F. (2005). MicroRNAs as regulators of mammalian hematopoie-sis. Semin Immunol 17, 155-165.CrossRefPubMedGoogle Scholar
  22. 22.
    Cobb, B. S., Nesterova, T. B., Thompson, E., Hertweck, A., O’Connor, E., Godwin, J., Wilson, C. B., Brockdorff, N., Fisher, A. G., Smale, S. T., and Merkenschlager, M. (2005). T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 201, 1367-1373.CrossRefPubMedGoogle Scholar
  23. 23.
    Du, T., and Zamore, P. D. (2005). microPrimer: the biogenesis and function of microRNA. Development 132, 4645-4652.CrossRefPubMedGoogle Scholar
  24. 24.
    Eis, P. S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M. F., Lund, E., and Dahlberg, J. E. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102, 3627-3632.CrossRefPubMedGoogle Scholar
  25. 25.
    Fazi, F., Rosa, A., Fatica, A., Gelmetti, V., De Marchis, M. L., Nervi, C., and Bozzoni, I. (2005). A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123, 819-831.CrossRefPubMedGoogle Scholar
  26. 26.
    Felli, N., Fontana, L., Pelosi, E., Botta, R., Bonci, D., Facchiano, F., Liuzzi, F., Lulli, V., Morsilli, O., Santoro, S., et al. (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythro- leukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102, 18081-18086.CrossRefPubMedGoogle Scholar
  27. 27.
    Filipowicz, W., Jaskiewicz, L., Kolb, F. A., and Pillai, R. S. (2005). Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15, 331-341.CrossRefPubMedGoogle Scholar
  28. 28.
    Gabbianelli, M., Testa, U., Massa, A., Pelosi, E., Sposi, N. M., Riccioni, R., Luchetti, L., and Peschle, C. (2000). Hemoglobin switching in unicellular erythroid culture of sibling erythroid burst-forming units: kit ligand induces a dose-dependent fetal hemoglobin reactivation poten-tiated by sodium butyrate. Blood 95, 3555-3561.PubMedGoogle Scholar
  29. 29.
    Garzon, R., Pichiorri, F., Palumbo, T., Iuliano, R., Cimmino, A., Aqeilan, R., Volinia, S., Bhatt, D., Alder, H., Marcucci, G., et al. (2006). MicroRNA fingerprints during human meg-akaryocytopoiesis. Proc Natl Acad Sci USA 103, 5078-83.CrossRefPubMedGoogle Scholar
  30. 30.
    Harfe, B. D. (2005). MicroRNAs in vertebrate development. Curr Opin Genet Dev 15, 410-415.CrossRefPubMedGoogle Scholar
  31. 31.
    He, L., and Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522-531.CrossRefPubMedGoogle Scholar
  32. 32.
    He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., Powers, S., Cordon-Cardo, C., Lowe, S. W., Hannon, G. J., and Hammond, S. M. (2005). A microRNA polycistron as a potential human oncogene. Nature 435, 828-833.CrossRefPubMedGoogle Scholar
  33. 33.
    Jiang, J., Lee, E. J., Gusev, Y., and Schmittgen, T. D. (2005). Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res 33, 5394-5403.CrossRefPubMedGoogle Scholar
  34. 34.
    Keller, G., Kennedy, M., Papayannopoulou, T., and Wiles, M. V. (1993). Hematopoietic com-mitment during embryonic stem cell differentiation in culture. Mol Cell Biol 13, 473-486.PubMedGoogle Scholar
  35. 35.
    Keller, G. M. (1995). In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7, 862-869.CrossRefPubMedGoogle Scholar
  36. 36.
    Kina, T., Ikuta, K., Takayama, E., Wada, K., Majumdar, A. S., Weissman, I. L., and Katsura, Y. (2000). The monoclonal antibody TER-119 recognizes a molecule associated with glycoph-orin A and specifically marks the late stages of murine erythroid lineage. Br J Haematol 109, 280-287.CrossRefPubMedGoogle Scholar
  37. 37.
    Kluiver, J., Haralambieva, E., de Jong, D., Blokzijl, T., Jacobs, S., Kroesen, B. J., Poppema, S., and van den Berg, A. (2006a). Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Gene Chromosome Cancer 45, 147-153.CrossRefGoogle Scholar
  38. 38.
    Kluiver, J., Kroesen, B. J., Poppema, S., and van den Berg, A. (2006b). The role of microR-NAs in normal hematopoiesis and hematopoietic malignancies. Leukemia 20, 1931-1936.CrossRefGoogle Scholar
  39. 39.
    Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., and Kosik, K. S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9, 1274-1281.CrossRefPubMedGoogle Scholar
  40. 40.
    Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., and Stoffel, M. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685-689.CrossRefPubMedGoogle Scholar
  41. 41.
    Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.CrossRefPubMedGoogle Scholar
  42. 42.
    Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20.CrossRefPubMedGoogle Scholar
  43. 43.
    Liang, R. Q., Li, W., Li, Y., Tan, C. Y., Li, J. X., Jin, Y. X., and Ruan, K. C. (2005). An oligo-nucleotide microarray for microRNA expression analysis based on labeling RNA with quan-tum dot and nanogold probe. Nucleic Acids Res 33, e17.CrossRefPubMedGoogle Scholar
  44. 44.
    Liu, C. G., Calin, G. A., Meloon, B., Gamliel, N., Sevignani, C., Ferracin, M., Dumitru, C. D., Shimizu, M., Zupo, S., Dono, M., et al. (2004). An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101, 9740-9744.CrossRefPubMedGoogle Scholar
  45. 45.
    Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A. A., et al. (2005). MicroRNA expression profiles clas-sify human cancers. Nature 435, 834-838.CrossRefPubMedGoogle Scholar
  46. 46.
    Marks, P. A., and Rifkind, R. A. (1978). Erythroleukemic differentiation. Annu Rev Biochem 47, 419-448. CrossRefPubMedGoogle Scholar
  47. 47.
    Marks, P. A., Sheffery, M., Ramsay, R., Ikeda, K., and Rifkind, R. A. (1987). Induction of transformed cells to terminal differentiation. Ann NY Acad Sci 511, 246-255.CrossRefPubMedGoogle Scholar
  48. 48.
    Metzler, M., Wilda, M., Busch, K., Viehmann, S., and Borkhardt, A. (2004). High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Gene Chromosome Cancer 39, 167-169.CrossRefGoogle Scholar
  49. 49.
    Miska, E. A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., Rakic, P., Constantine-Paton, M., and Horvitz, H. R. (2004). Microarray analysis of microRNA expres-sion in the developing mammalian brain. Genome Biol 5, R68.CrossRefPubMedGoogle Scholar
  50. 50.
    Muljo, S. A., Ansel, K. M., Kanellopoulou, C., Livingston, D. M., Rao, A., and Rajewsky, K. (2005). Aberrant T cell differentiation in the absence of Dicer. J Exp Med 202, 261-269.CrossRefPubMedGoogle Scholar
  51. 51.
    Neely, L. A., Patel, S., Garver, J., Gallo, M., Hackett, M., McLaughlin, S., Nadel, M., Harris, J., Gullans, S., and Rooke, J. (2006). A single-molecule method for the quantitation of micro-RNA gene expression. Nat Methods 3, 41-46.CrossRefPubMedGoogle Scholar
  52. 52.
    Nelson, P. T., Baldwin, D. A., Scearce, L. M., Oberholtzer, J. C., Tobias, J. W., and Mourelatos, Z. (2004). Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1, 155-161.CrossRefPubMedGoogle Scholar
  53. 53.
    Nielsen, J. T., Stein, P. C., and Petersen, M. (2003). NMR structure of an alpha-L-LNA:RNA hybrid: structural implications for RNase H recognition. Nucleic Acids Res 31, 5858-5867.CrossRefPubMedGoogle Scholar
  54. 54.
    . Papayannopoulou, T., D’Andrea, Alan D., Abkowitz, Janis L. and Migliaccio, Anna Rita (2006). Biology of Erythropoiesis, Erythroid Differentiation, and Maturation. In Hematology-Basic principles and Practice, R. Hoffman, Benz, Jr., Edward J., Shattil, Sanford J., Furie, Bruce, Cohen, Harvey J. Silberstein, Leslie, E., McGlave, Philip, ed. (Elsevier), pp. 267-288.Google Scholar
  55. 55.
    Pillai, R. S., Bhattacharyya, S. N., and Filipowicz, W. (2006). Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17, 118-26.CrossRefGoogle Scholar
  56. 56.
    Plasterk, R. H. (2006). Micro RNAs in animal development. Cell 124, 877-881.CrossRefPubMedGoogle Scholar
  57. 57.
    Poliseno, L., Tuccoli, A., Mariani, L., Evangelista, M., Citti, L., Woods, K., Mercatanti, A., Hammond, S., and Rainaldi, G. (2006). MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108, 3068-3071.CrossRefPubMedGoogle Scholar
  58. 58.
    Rathjen, T., Nicol, C., McConkey, G., and Dalmay, T. (2006). Analysis of short RNAs in the malaria parasite and its red blood cell host. FEBS Lett 580, 5185-5188.CrossRefPubMedGoogle Scholar
  59. 59.
    Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906.CrossRefPubMedGoogle Scholar
  60. 60.
    Schmittgen, T. D., Jiang, J., Liu, Q., and Yang, L. (2004). A high-throughput method to moni-tor the expression of microRNA precursors. Nucleic Acids Res 32, e43.CrossRefPubMedGoogle Scholar
  61. 61.
    Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., and Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed micro-RNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5, R13.CrossRefPubMedGoogle Scholar
  62. 62.
    Shi, R., and Chiang, V. L. (2005). Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39, 519-525.CrossRefPubMedGoogle Scholar
  63. 63.
    Shivdasani, R. A. (2006). MicroRNAs: regulators of gene expression and cell differentiation. Blood 108, 3646-3653.CrossRefPubMedGoogle Scholar
  64. 64.
    Sioud, M., and Rosok, O. (2004). Profiling microRNA expression using sensitive cDNA probes and filter arrays. Biotechniques 37, 574-576, 578-580.Google Scholar
  65. 65.
    Socolovsky, M., Nam, H., Fleming, M. D., Haase, V. H., Brugnara, C., and Lodish, H. F. (2001). Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 98, 3261-3273.CrossRefPubMedGoogle Scholar
  66. 66.
    Sontheimer, E. J., and Carthew, R. W. (2005). Silence from within: endogenous siRNAs and miRNAs. Cell 122, 9-12.CrossRefPubMedGoogle Scholar
  67. 67.
    Sposi, N. M., Zon, L. I., Care, A., Valtieri, M., Testa, U., Gabbianelli, M., Mariani, G., Bottero, L., Mather, C., Orkin, S. H., et al. (1992). Cell cycle-dependent initiation and lineage-dependent abrogation of GATA-1 expression in pure differentiating hematopoietic progenitors. Proc Natl Acad Sci USA 89, 6353-6357. CrossRefPubMedGoogle Scholar
  68. 68.
    Strauss, W. M., Chen, C., Lee, C. T., and Ridzon, D. (2006). Nonrestrictive developmental regulation of microRNA gene expression. Mamm Genome 17, 833-840.CrossRefPubMedGoogle Scholar
  69. 69.
    Sun, Y., Koo, S., White, N., Peralta, E., Esau, C., Dean, N. M., and Perera, R. J. (2004). Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 32, e188.CrossRefPubMedGoogle Scholar
  70. 70.
    Thomson, J. M., Parker, J., Perou, C. M., and Hammond, S. M. (2004). A custom microarray platform for analysis of microRNA gene expression. Nat Methods 1, 47-53.CrossRefPubMedGoogle Scholar
  71. 71.
    Tolstrup, N., Nielsen, P. S., Kolberg, J. G., Frankel, A. M., Vissing, H., and Kauppinen, S. (2003). OligoDesign: optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucleic Acids Res 31, 3758-3762.CrossRefPubMedGoogle Scholar
  72. 72.
    Valoczi, A., Hornyik, C., Varga, N., Burgyan, J., Kauppinen, S., and Havelda, Z. (2004). Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32, e175.CrossRefPubMedGoogle Scholar
  73. 73.
    Weiss, M. J., and Orkin, S. H. (1996). In vitro differentiation of murine embryonic stem cells. New approaches to old problems. J Clin Invest 97, 591-595.CrossRefPubMedGoogle Scholar
  74. 74.
    Wightman, B., Ha, I., and Ruvkun, G. (1993). Posttranscriptional regulation of the hetero-chronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855-862.CrossRefPubMedGoogle Scholar
  75. 75.
    Xie, X., Lu, J., Kulbokas, E. J., Golub, T. R., Mootha, V., Lindblad-Toh, K., Lander, E. S., and Kellis, M. (2005). Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338-345.CrossRefPubMedGoogle Scholar
  76. 76.
    Zhan, M., Miller, C. P., Papayannopoulou, T., Stamatoyannopoulos, G., and Song, C. Z. (2007). MicroRNA expression dynamics during murine and human erythroid differentiation. Exp Hematol 35, 1015-1025.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Mei Zhan
    • 1
  • Chao-Zhong Song
    • 1
  1. 1.Division of Medical GeneticsDepartment of Medicine University of WashingtonSeattleUSA

Personalised recommendations