Skip to main content

RNA Interference Expression Vectors Based on miRNAs and RNA Splicing

  • Chapter
  • 1397 Accesses

RNA interference (RNAi) has emerged as a powerful tool in basic research and therapeutics by silencing the expression of specific target genes. RNAi occurs naturally within cells to regulate gene expression at the post-transcriptional level. The development of reliable RNAi vectors encoding artificial and natural miRNAs would be useful tools for many RNAi applications. Here, we describe two new RNAi vectors, designated pSM155 and pSM30, that take into consideration of miRNA processing and RNA splicing by placing the miRNA-based artificial miRNA expression cassettes inside of synthetic introns. These vectors significantly improved the expression of a co-expressed enhanced green fluorescent protein (EGFP) marker and also provide a simplified cloning method. We discuss the advantages of these vectors, their potential applications, and concerns in using miRNA-based vectors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brummelkamp, T.R., Bernards, R., and Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550-553.

    Article  CAS  PubMed  Google Scholar 

  2. Chung, K.H., Hart, C.C., Al-Bassam, S., Avery, A., Taylor, J., Patel, P.D., Vojtek, A.B., and Turner, D.L. (2006). Polycistronic RNA polymerase II expression vectors for RNA interfer-ence based on BIC/miR-155. Nucleic Acids Res 34, e53.

    Article  PubMed  Google Scholar 

  3. Cullen, B.R. (2004). Transcription and processing of human microRNA precursors. Mol Cell 16, 861-865.

    Article  CAS  PubMed  Google Scholar 

  4. de Fougerolles, A., Vornlocher, H.P., Maraganore, J., and Lieberman, J. (2007). Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6, 443-453.

    Article  CAS  PubMed  Google Scholar 

  5. Dickins, R.A., Hemann, M.T., Zilfou, J.T., Simpson, D.R., Ibarra, I., Hannon, G.J., and Lowe, S.W. (2005). Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat Genet 37, 1289-1295.

    CAS  PubMed  Google Scholar 

  6. Du, G., Yonekubo, J., Zeng, Y., Osisami, M., and Frohman, M.A. (2006). Design of expres-sion vectors for RNA interference based on miRNAs and RNA splicing. FEBS J 273, 5421-5427.

    Article  CAS  PubMed  Google Scholar 

  7. Kim, V.N. (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6, 376-385.

    Article  CAS  PubMed  Google Scholar 

  8. Lin, S.L., and Ying, S.Y. (2006). Gene silencing in vitro and in vivo using intronic microRNAs. Methods Mol Biol (Clifton, NJ) 342, 295-312.

    CAS  Google Scholar 

  9. Mittal, V. (2004). Improving the efficiency of RNA interference in mammals. Nat Rev Genet 5, 355-365.

    Article  CAS  PubMed  Google Scholar 

  10. Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J., and Conklin, D.S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16, 948-958.

    Article  CAS  PubMed  Google Scholar 

  11. Silva, J.M., Li, M.Z., Chang, K., Ge, W., Golding, M.C., Rickles, R.J., Siolas, D., Hu, G., Paddison, P.J., Schlabach, M.R., et al. (2005). Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 37, 1281-1288.

    CAS  PubMed  Google Scholar 

  12. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J., and Elledge, S.J. (2005). A lentiviral micro-RNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci USA 102, 13212-13217.

    Article  CAS  PubMed  Google Scholar 

  13. Thomson, J.M., Newman, M., Parker, J.S., Morin-Kensicki, E.M., Wright, T., and Hammond, S.M. (2006). Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20, 2202-2207.

    Article  CAS  PubMed  Google Scholar 

  14. Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R., and Saigo, K. (2004). Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32, 936-948.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, H., Xia, X.G., and Xu, Z. (2005). An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi. Nucleic Acids Res 33, e62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Bonsra, A.N., Yonekubo, J., Du, G. (2008). RNA Interference Expression Vectors Based on miRNAs and RNA Splicing. In: Ying, SY. (eds) Current Perspectives in microRNAs (miRNA). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8533-8_3

Download citation

Publish with us

Policies and ethics