Advertisement

Wet Snow Accretion on Overhead Lines

  • Pierre Admirat

Keywords

Liquid Water Content Torsional Stiffness Snow Layer Overhead Line Joule Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Admirat P and Dalle B (1984) Accrétion de la neige collante surles conducteurs aériens: synthèse des études et des essais effectués en soufflerie avec le C.R.I.E.P.I. en janvier 1984. Tech Report, EDF/DER/ERMEL/TA/HM/72-5200, 27pGoogle Scholar
  2. Admirat P and Dalle B (1985) Théorie et modélisation de la formation des manchons de neige collante sur les lignes aériennes. Tech Report n$ˆ$8, EDF/INSU/CNRS M72/1B5912, 68 pGoogle Scholar
  3. Admirat P and Lapeyre JL (1988) Theoretical study and experimental verification of the torsion of cables submitted to densities of moments due to the accumulation of wet snow. In: Proc of the 4th International Workshop on Atmospheric Icing of Structures, Paris: 324–329Google Scholar
  4. Admirat P and Maccagnan M (1986) Vérification de la prévision quantitative des épisodes de neige collante. Tech Report, EDF/DER/ERMELTA/HM/72-5550Google Scholar
  5. Admirat P and Sakamoto Y (1988) Wet snow on overhead lines: a state of the art. In: Proc of the 4th International Workshop on Atmospheric Icing of Structures, Paris: 7–13Google Scholar
  6. Admirat P et al. (1985) Simulation en soufflerie des mécanismesd’accrétion cylindrique de neige collante. Tech Report EDF/DER/ERMEL/TA/HM/72-5291Google Scholar
  7. Admirat P et al. (1986) Calibration of a wet snow accumulation model with 13 documented episodes in Japan. Tech Report EDF/DER/ERMEL M72/1B 5600Google Scholar
  8. Admirat P et al. (1986) Quantitative results and proposed mechanisms on wet snow accretion in the Ishiuchi wind-tunnel facilities. In: Proc of the 3rd International Workshop on Atmospheric Icing of Structures, VancouverGoogle Scholar
  9. Admirat P et al. (1987) Première reconstitution quantitative d’unépisode de neige collante: Mulhouse/Belfort/Colmar 1–2 janvier 1962. Tech Report, EDF/DER/ERMEL/TA/HM 72 – 5612, 30 pGoogle Scholar
  10. Admirat P et al. (1988) Calibration of a wet snow accumulation model on real cases in Japan and France. In: Proc of the 4th International Workshop on Atmospheric Icing of Structures, Paris, pp 129–133Google Scholar
  11. Admirat P et al. (1988) Influence of Joule effect and of climatic conditions on Liquid Water Content of wet snow accreted on conductors. In: Proc of the 4th International Workshop on Atmospheric Icing of Structures, Paris: 367–371Google Scholar
  12. Admirat P et al. (1990) Synthesis of observations and practical results of the EDF wet snow program 1983–1990. In: Proc of the 5th International Workshop on Atmospheric Icing of Structures, TokyoGoogle Scholar
  13. Admirat P et al. (1984) Observations of wet snow episodes on electric lines. Tech Report no 5912, EDF/DER/ERMEL/TA/M72Google Scholar
  14. Admirat P et al. (1985) Observations of wet snow episodes on electric lines. Tech Report no 5287, EDF/DER/ERMEL/TA/M72Google Scholar
  15. Admirat P et al. (1986) Observations of wet snow episodes on electric lines. Tech Report no 5553, EDF/DER/ERMEL/TA/M72Google Scholar
  16. Admirat P et al. (1987) Observations of wet snow episodes on electric lines. Tech Report no 5631, EDF/DER/ERMEL/TA/M72Google Scholar
  17. Admirat P et al. (1988) Observations of wet snow episodes on electric lines. Tech Report no 5699, EDF/DER/ERMEL/TA/M72Google Scholar
  18. Chassant M (1902) Les chutes de neige sous le climatméditerranéen. Ecole Nationale d’Agriculture, MontpellierGoogle Scholar
  19. Colbeck SC (1973) Theory of wet snow metamorphosis. Research Report 313, CRREL, HanoverGoogle Scholar
  20. Colbeck SC (1976) Thermodynalical deformation of wet snow. CREEL Report, 74–44Google Scholar
  21. Colbeck SC (1979) Grain clusters in wet snow. Journal of Colloid and Interface Sciences, 72–3: 371–384CrossRefGoogle Scholar
  22. Colbeck SC and Ackley SF (1982) Mechanisms for ice bonding in wet snow accretions on power lines. In: Proc of the 1st International Workshop on Atmospheric Icing of Structures, HanoverGoogle Scholar
  23. EDF (1995) Technical Convention of Electricity – Guideline 175, April, ReimsGoogle Scholar
  24. Eliasson AJ and Thorsteins E (2000) Field measurements of wet snow icing accumulation. In: Proc of the 9th International Workshop on Atmospheric Icing of Structures, ChesterGoogle Scholar
  25. Eliasson AJ et al. (2000) Study of wet snow events on the south coast of Iceland. In: Proc of the 9th International Workshop on Atmospheric Icing of Structures, ChesterGoogle Scholar
  26. Fikke S (2005) Modern Meteorology and atmospheric Icing. In: Proc of the 11th International Workshop on Atmospheric Icing of Structures, MontrealGoogle Scholar
  27. Gland H and Admirat P (1986) Meteorological conditions for wet snow occurence in France. Calculated and measured results in a recent case study on March 5th, 1985. In: Proc of the 3rd International Workshop on Atmospheric Icing of Structures,VancouverGoogle Scholar
  28. Gosselin M and Lapeyre JL (1985) Theoretical study of the twisting of overhead-lines conductors under torque densities caused by the accumulation of wet snow. Tech Report EDF/DER/ERMEL M72/1B 5332Google Scholar
  29. Grenier JC et al. (1985) Théorie et modélisationde la formation des manchons de neige collante. EDF/INSU M72/1B 5912, Report n° 8Google Scholar
  30. Grenier JC et al. (1986) Theoretical study of the heat balance during the growth of wet snow sleeves on electrical conductors. In: Proc of the 3rd International Workshop on Atmospheric Icing of Structures,VancouverGoogle Scholar
  31. Hardy C et al. (2005) Theoretical assessment of ice loading of cables as a function of their torsionnal stiffness. In: Proc of the 11th International Workshop on Atmospheric Icing of Structures,MontrealGoogle Scholar
  32. Kitashima T et al. (2005) A new attempt to estimate wet snow accretion on Overhead wires. In: Proc of the 11th International Workshop on Atmospheric Icing of Structures, MontrealGoogle Scholar
  33. Krishnasamy S et al. (2000) Estimation of extreme wet snow loads in Southern Norway. In: Proc of the 9th International Workshop on Atmospheric Icing of Structures, ChesterGoogle Scholar
  34. Lapeyre JL (1986) Etude des mécanismes d’accumulation de Neige Collante. CIGRE , ParisGoogle Scholar
  35. Lapeyre JL and Gland H (1987) Overhead lines faced with climaticoverloads. CIRED, LiègeGoogle Scholar
  36. Lapeyre JL and Hiriart A (1984) Protection par effet Joule des lignes aériennes contre les formations de manchons de givre ou de neige collante autour des conducteurs. Tech Report EDF/DER ERMEL, TA/HM/72 – 5133Google Scholar
  37. Lapeyre JL et al. (1986) Fonctionnement de la station de Villefort du 28/01/1986 au 04/04/1987. Etude des surcharges de neige collante sur les portées expérimentales. Tech Report EDF/DER/ERMEL M72/1B 5539Google Scholar
  38. Maccagnan M et al. (1988) Space-time modelisation of a major wet snow episode (Perpignan, January 30–31th, 1986). In: Proc of the 4th International Workshop on Atmospheric Icing of Structures, Paris: 14–18.Google Scholar
  39. Makkonen L (1989) Estimation of wet snow accretion on structures. Cold Regions Sci Technol, vol 17: 83–88CrossRefGoogle Scholar
  40. Poots G and Skelton PLI (1988) A theoretical model of ice accretion on an overhead line conductor causing twisting of the conductor. In: Proc of the 4th International Workshop on Atmospheric Icing of Structures, Paris: 219–223Google Scholar
  41. Poots G and Skelton PLI (1993) The effects of includong aerodynamictorque in the model of snow accretion on overhead transmission lines. In: Proc of the 6th International Workshop on Atmospheric Icing of Structures, BudapestGoogle Scholar
  42. Prud’Homme P et al. (2005) Hydro-Québec TransEnergie line conductor de-icing techniques. In: Proc of the 4th International Workshop on Atmospheric Icing of Structures, MontrealGoogle Scholar
  43. Sakamoto Y and Miura A (1993a) An estimating method of snow load on overhead power lines. In: Proc of the 6th International Workshop on Atmospheric Icing of Structures, BudapestGoogle Scholar
  44. Sakamoto Y and Miura A (1993b) Comparative study of wet snow models for estimating snow loads on power lines based on general meteorological parameters. In: Proc of the 6th International Workshop on Atmospheric Icing of Structures, BudapestGoogle Scholar
  45. Sakamoto Y et al. (1986) Modelling wet snow accretion in a wind-tunnel. In: Proc of the 3rd International Workshop on Atmospheric Icing of Structures, VancouverGoogle Scholar
  46. Sakamoto Y et al. (1988) Thermodynamic simulation of wet snow accretion under wind-tunnel conditions. In: Proc of the 4th International Workshop on Atmospheric Icing of Structures, Paris: 80–185Google Scholar
  47. Sakamoto Y et al. (2005) Snow accretion on overhead wires. In: Proc of the 11th International Workshop on Atmospheric Icing of Structures, MontrealGoogle Scholar
  48. Saotome H et al. (1988) Countermeasures for snow accretion on conductors. In: Proc of the 4th International Workshop on Atmospheric Icing of Structures, Paris: 363–366Google Scholar
  49. Shackleton L et al. (1993) Comparison of growth rates on groups of stranded conductors. EALT contractGoogle Scholar
  50. Skelton PLI and Poots G (1991) Snow accretion on overhead line conductors of finite torsionnal stiffness. Cold Region Science and Technology, vol 19: 301–316CrossRefGoogle Scholar
  51. Tournadre R (1986) Station d’études de la neige collante de Luchon-Vallée du Lys. Tech Report EDF/DER /ERMEL M72/1B 5534Google Scholar
  52. Wakahama G (1965) Metamorphosis of wet snow. Institute of Low Temperature Sciences, series A, 23, Hokkaïdo: 51–66Google Scholar
  53. Wakahama G and Mizuno Y (1979) Studies on tensile strenghtstrength of wet snow. CREEL, Special Report no 185, HanoverGoogle Scholar
  54. Yamaoka M et al. (1988) Countermeasures to both of the wet snow accretion and the galloping damages on the transmission lines. In: Proc of the 4th International Workshop on Atmospheric Icing of Structures, Paris: 376–380Google Scholar
  55. Zsolt P et al. (2005) Power line conductor icing prevention by the Joule effect: parametric analysis and energy requirements. In: Proc of the 11th International Workshop on Atmospheric Icing of Structures, MontrealGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Pierre Admirat
    • 1
  1. 1.Meteorology Consultant96 Chemin des Sept Laux38330 Saint IsmierFrance

Personalised recommendations