Skip to main content

Modified Azo-Polysiloxanes for Complex Photo-Sensible Supramolecular Systems

  • Conference paper
Silicon Based Polymers

Abstract

Here we show the possibility to obtain different types of azo-polysiloxanes capable to respond to light stimuli. The azo-polymers were prepared starting from a polysiloxane containing chlorobenzyl groups in the side-chain, using a two-step -substitution reaction. In the first step, the polysiloxanes were modified with azo-benzene groups and, in the second one, different systems, as functions of the -envisaged application (nucleobases, donor/acceptor or ammonium -quaternary groups) were connected to the side-chain. The photochromic behavior in the presence of UV irradiation or natural visible light was investigated, in solution or in the solid state. Even the maximum conversion degree from trans- to cis- configuration of the azo groups is slightly lower in the solid state as compared with the solution, the response rates are similar on the time-scale. The cis-trans relaxation behavior is different for the systems containing nucleobases, as compared with the donor/acceptor ones. In the case of the azo-polysiloxanes containing quaternary ammonium groups, the polymer aggregation capacity was investigated. The critical aggregation concentration is situated at lower values that can be explained by the azobenzenic group aggregation capacity to generate a hydrophobic micelle core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Natanson A, Rochon P. (2002) Photoinduced motions in azo-containing polymers. Chem Rev 102:4139–4175

    Article  Google Scholar 

  2. Hubert C, Malcor E, Maurin I, Nunzi J-M et al. (2002) Microstructuring of polymers using a light-controlled molecular migration processes. Appl Surf Sci 186:29–33

    Article  CAS  Google Scholar 

  3. Fukuda T, Matsuda H, Shiraga T et al. (2000) Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization. Macromolecules 33:4220–4225

    Article  CAS  Google Scholar 

  4. Yager K G, Barrett C. (2001) All-optical patterning of azo polymer films. Current Opinion in Solid State & Materials Science 5:487–494

    Article  CAS  Google Scholar 

  5. Calvacanti E A, Shapiro I M, Composto R J, et al. (2002) RGD Peptides immobilized on a mechanically deformable surface promote osteoblast differentiation. J Bone Min Res 17:2130–2140

    Article  Google Scholar 

  6. Yoshinari M, Matsuzaka K, Inoue T, Oda Y, Shimono, M. (2004) Effects of multigrooved surfaces on osteoblast-like cells in vitro: Scanning electron microscopic observation and mRNA expression of osteopontin and osteocalcin. J Biomed Mat Res Part A 68 A:227–234

    Google Scholar 

  7. Craighead H G, James C D, Turner A M P (2001) Chemical and topographical patterning for directed cell attachment. Current Opinion in Solid State & Materials Science 5: 177–184

    Article  CAS  Google Scholar 

  8. Cojocariu C, Rochon P. (2004) Light-induced motions in azobenzene-containing polymers. Pure Appl Chem 76:1479–1497

    Article  CAS  Google Scholar 

  9. Saphiannikova M, Geue T M, Hennenberg O, Morawetz K, Pietsch U. (2004) Linear viscoelastic analysis of formation and relaxation of azobenzene polymer gratings. J Chem Phys 120:4039–4045

    Article  CAS  Google Scholar 

  10. Yager K G, Barrett C. (2004) Temperature modelling of laser-irradiated azo-polymer thin films. J Chem Phys 120:1089–1096

    Article  CAS  Google Scholar 

  11. Kim W H, Bihari B, Moody R, Kodali N B, Kumar J, Tripathy S K. (1995) Self-assembled spin-coated and bulk films of a novel poly(diacetylene) as second-order nonlinear optical polymers. Macromolecules 28:642–647

    Article  CAS  Google Scholar 

  12. Delaire J A, Nakatani K. (2000) Linear and nonlinear optical properties of photochromic molecules and materials. Chem Rev 100:1817–1846

    Article  CAS  Google Scholar 

  13. Pedersen T G, Johansen P M. (1997) Mean-field theory of photoinduced molecular reorientation in azobenzene liquid crystalline side-chain polymers. Phys Rev Lett 79:2470–2473

    Article  CAS  Google Scholar 

  14. Hurduc N, Enea R, Scutaru D et al. (2007) Nucleobases modified azo-polysiloxanes, materials with potential application in biomolecules nanomanipulation. J Polym Sci: Part A: Polym Chem 45:4240–4248

    Article  CAS  Google Scholar 

  15. Karageorgiev P, Neher D, Schulz1 B et al. (2005) From anisotropic photo-fluidity towards nanomanipulation in the optical near-field. Nature Mat 4:699–703

    Article  CAS  Google Scholar 

  16. Su W, Han K, Luo Y et al. (2007) Formation and photoresponsive properties of giant microvesicles assembled from azobenzene-containing amphiphilic diblock copolymers. Macromol Chem Phys 208:955–963

    Article  CAS  Google Scholar 

  17. Shang T, Smith K A, Hatton T A. (2003) Photoresponsive surfactants exhibiting unusually large, reversible surface tension changes under varying illumination conditions. Langmuir 19:10764–10773

    Article  CAS  Google Scholar 

  18. Tong X, Wang G, Soldera A, Zhao Y. (2005) How can azobenzene block copolymer vesicles be dissociated and reformed by light? J Phys Chem B 109:20281–20287

    Article  CAS  Google Scholar 

  19. Wang G, Tong X, Zhao Y. (2004) Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 37:8911–8917

    Article  CAS  Google Scholar 

  20. Discher D E, Eisenberg A. (2002) Polymer vesicles. Science 297:967–973

    Article  CAS  Google Scholar 

  21. Haag R. (2004) Supramolecular drug-delivery systems based on polymeric core-shell architecture. Angew Chem Int Ed 43:278–282

    Article  CAS  Google Scholar 

  22. Kazmierski K, Hurduc N, Sauvet G, Chojnowski J. (2004) Polysiloxanes with chlorobenzyl groups as precursors of new organic-silicone materials. J Polym Sci Part A: Polym Chem 42:1682–1692

    Article  CAS  Google Scholar 

  23. Materials Studio 4.0., Accelrys Software, Inc., San Diego (licensed to Nicolae Hurduc)

    Google Scholar 

  24. Ikeda T. (2003) Photomodulation of liquid crystal orientations for photonic applications. J Mater Chem 13:2037–2057

    Article  CAS  Google Scholar 

  25. Shishido A, Tsutsumi O, Kanazawa A, Shiono T, Ikeda T, Tamai N. (1997) Distinct photochemical phase transition behavior of azobenzene liquid crystals evaluated by reflection-mode analysis. J Phys Chem B 101:2806–2810

    Article  CAS  Google Scholar 

  26. Yager K, Tanchak O, Godbout C, Fritzsche H, Barrett C. (2006) Photomechanical effects in azo-polymers studied by neutron reflectometry. Macromolecules 39:9311–9319

    Article  CAS  Google Scholar 

  27. Keniry M A, Owen E, Shafer R. (1997) The contribution of thymine-thymine interactions to the stability of folded dimeric quadruplexes. Nucleic Acids Res. 25:4389–4392

    Article  CAS  Google Scholar 

  28. Lutz J-F, Thunemann A F, Nehring R. (2005) Preparation by controlled radical polymerization and self-assembly via base-recognition of synthetic polymers bearing complementary nucleobases. J Polym Sci Part A: Polym Chem 43:4805–4818

    Article  CAS  Google Scholar 

  29. Wang G, Tong X, Zhao Y. (2004) Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 37:8911–8917

    Article  CAS  Google Scholar 

  30. Jiang J, Tong X, Morris D, Zhao Y. (2006) Toward photocontrolled release using light–dissociable bloc copolymer micelles. Macromolecules 39:4633–4640

    Article  CAS  Google Scholar 

  31. Zhao Y. (2007) Rational design of light-controllable polymer micelles. Chem Record 7:286–294

    Article  CAS  Google Scholar 

  32. Lin Y, Alexandridis P. (2002) Self-Assembly of an Amphiphilic Siloxane Graft Copolymer in Water. J Phys Chem B 106:10845–10853

    Article  CAS  Google Scholar 

  33. Kalyanasundaram K, Thomas J K. (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044

    Article  CAS  Google Scholar 

  34. Kuiper J M, Engberts J B. (2004) H-Aggregation of azobenzene-substituted amphiphiles in vesicular membranes. Langmuir 20:1152–1160

    Article  CAS  Google Scholar 

  35. Tong X, Cui L, Zhao Y. (2004) Confinement effects on photoalignment, photochemical phase transition and thermochromic behavior of liquid crystalline azobenzene-containing diblock copolymers. Macromolecules 37:3101–3112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolae Hurduc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this paper

Cite this paper

Hurduc, N., Enea, R., Resmerita, A.M., Moleavin, I., Cristea, M., Scutaru, D. (2008). Modified Azo-Polysiloxanes for Complex Photo-Sensible Supramolecular Systems. In: Ganachaud, F., Boileau, S., Boury, B. (eds) Silicon Based Polymers. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8528-4_6

Download citation

Publish with us

Policies and ethics