• Juliette Fitremann
  • Waêl Moukarzel
  • Monique Mauzac


This article reviews the methods described to date for the preparation of polysiloxanes with well-defined structures containing sugar groups either as sidechain groups, end-groups or included in the main chain.


Carbohydrate sugar glyco polysiloxane glycopolysiloxane hydrosilylation polymer glycopolymer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.K. Lindhorst, “Essentials of Carbohydrate Chemistry and Biochemistry”, 2007, Wiley VCH Ed., Chap 6, 213–237.Google Scholar
  2. 2.
    Patent A.J. O’Lenick, US 5,428,142 (27/06/1995)Google Scholar
  3. 3.
    J. Fitremann, Unpublished results.Google Scholar
  4. 4.
    e.g. patents WO 02/088456 (07/11/2002), WO 2006/127924 (30/11/2006).Google Scholar
  5. 5.
    K. Beppu, Y. Kaneko, J-I. Kadokawa, H. Mori, T. Nishikawa, Polymer J., 2007, 39(10), 1065–1070. “Synthesis of sugar-polysiloxane hybrids having rigid main-chain and formation of their nano -aggregates”Google Scholar
  6. 6.
    R. Wagner, L. Richter, R. Wersig, G. Schmaucks, B. Weiland, J. Weissmueller, J. Reiners, Appl. Organometal. Chem., 1996, 10(6), 421–435. “Silicon-modified carbohydrate surfactants. I. Synthesis of siloxanyl moieties containing straight-chained glycosides and amides.”CrossRefGoogle Scholar
  7. 7.
    R. Wagner, L. Richter, B. Weiland, J. Reiners, J. Weissmüller, Appl. Organometal. Chem., 1996, 10(6), 437–450. “Silicon-modified carbohydrate surfactants. II. Siloxanyl moieties containing branched structures.”CrossRefGoogle Scholar
  8. 8.
    R. Wagner, L. Richter, B. Weiland, J. Weissmüller, J. Reiners, W. Kraemer, Appl. Organometal. Chem., 1997, 11(6), 523–538. “Silicon-modified carbohydrate surfactants.III. Cationic and anionic compounds.”CrossRefGoogle Scholar
  9. 9.
    T. Dietz, B. Gruning, P. Lersch, C. Weitemeyer, US 5,891,977, 06/04/1999. “Organopolysiloxanes comprising polyhydroxorganyl radicals and polyoxyalkylene radicals”.Google Scholar
  10. 10.
    G. Torres, G. Wajs, FR 2646672, 11/09/1990. “Elastomère de silicone mouillable convenant à la fabrication de lentilles de contact”.Google Scholar
  11. 11.
    R. Wersig, G. Sonnek, C. Niemann, Appl. Organomet. Chem. 1992, 6, 701–708. “Novel nonionic siloxane surfactants”CrossRefGoogle Scholar
  12. 12.
    G. Jonas, R. Stadler, Makromol. Chem., Rapid Commun. 1991, 12, 625 “Polysiloxanes with statistically distributed glucose and galactose units, 1: Synthesis and thermal characterization”Google Scholar
  13. 13.
    G. Jonas, R. Stadler, Acta Polymer., 1994, 45, 14–20. “Carbohydrate modified polysiloxanes II. Synthesis via hydrosilation of mono-, di-and oligosaccharide allylglycosides”.Google Scholar
  14. 14.
    K. Loos, G. Jonas, R. Stadler, Macromol. Chem. Phys. 2001, 202, 3210–3218, “Carbohydrate Modified Polysiloxanes, 3. Solution Properties of carbohydrate-Polysiloxane conjugates in Toluene”.CrossRefGoogle Scholar
  15. 15.
    V. von Braunmühl, R. Stadler, Polymer, 1998, 65, 1617. “Synthesis of aldonamide siloxanes by hydrosilylation”.CrossRefGoogle Scholar
  16. 16.
    T. Akimoto, K. Kawahara, Y. Nagase, T. Aoyagi, Macromol. Chem. Phys., 2000, 201(18), 2729–2734. “Preparation of oligodimethylsiloxanes with sugar moiety at a terminal group as a transdermal penetration enhancer”.CrossRefGoogle Scholar
  17. 17.
    T. Akimoto, K. Kawahara, Y. Nagase, T. Aoyagi, J. Control. Release, 2001, 77, 49–51. “Polymeric transdermal drug penetration enhancer: The enhancing effect of oligodimethylsiloxane containing a glucopyranosyl end group”.CrossRefGoogle Scholar
  18. 18.
    T. Akimoto, Y. Nagase, J. Control. Release, 2003, 88, 243–252. “Novel transdermal drug penetration enhancer: synthesis and enhancing effect of alkyldisiloxane compounds containing glucopyranosyl group”.Google Scholar
  19. 19.
    M. Haupt, S. Knaus, T. Rohr, H. Gruber, J. Macromol. Sci. Pure Appl. Chem. 2000, A37(4), 323–341. “Carbohydrate modified polydimethylsiloxanes. Part 1. Synthesis and Characterization of carbohydrate silane and siloxane building blocks”Google Scholar
  20. 20.
    D. Henkensmeier, B. C. Abele, A. Candussio, J. Thiem, Macromol. Chem. Phys., 2004, 205, 1851–1857. “Synthesis and characterization of terminal carbohydrate modified polydimethylsiloxanes”.CrossRefGoogle Scholar
  21. 21.
    C. Racles, T. Hamaide, Macromol. Chem. Phys., 2005, 206, 1757–1768. “Synthesis and characterization of water soluble saccharide functionalized polysiloxanes and their use as polymer surfactants for the stabilization of polycaprolactone nanoparticles.”CrossRefGoogle Scholar
  22. 22.
    C. Racles, T. Hamaide, A. Ioanid, Appl. Organometal. Chem. 2006, 20(4), 235–245. “Siloxane surfactants in polymer nanoparticles formulation.”CrossRefGoogle Scholar
  23. 23.
    E. Fleury, Patent WO 2005 087843, 22/09/2005. “Grafted polymers comprising a polyorganosiloxane backbone and glycoside units”.Google Scholar
  24. 24.
    ISPO International Symposium, Montpellier (Mèze, France), juin 2007.Google Scholar
  25. 25.
    E. Fleury, S. Halila, H. Driguez, S. Cottaz, T. Hamaide, S. Fort, FR 2 900 931, 16/11/2007. “Hybrid compounds based on silicones and at least one another polymer or nonpolymer molecular entity bonded to the silicone chains by nitrogen-containing rings, their preparation process, and their applications.”Google Scholar
  26. 26.
    T. Ogawa, J. Polymer Sci., Part A: Polymer Chem. 2003, 41(21), 3336–3345. “Simplified synthesis of carbohydrate-functional siloxanes via transacetalation. I. Glucose-functional siloxanes”.CrossRefGoogle Scholar
  27. 27.
    T. Ogawa, Macromol. 2003, 36(22), 8330–8335. “Simplified Synthesis of Amphiphilic Siloxanes with Methyl Gluconyl Glycinate Functionalities via Transacetalation”.CrossRefGoogle Scholar
  28. 28.
    V. von Braunmühl, G. Jonas, R. Stadler, Macromol., 1995, 28, 17–24. “Enzymatic grafting of amylose from polydimethylsiloxanes”.CrossRefGoogle Scholar
  29. 29.
    V. v. Braunmühl, R. Stadler, Macromol. Symp. 1996, 103, 141–148. “Polydimethylsiloxanes with amylose side chains by enzymatic polymerization”Google Scholar
  30. 30.
    B. Sahoo, K.F. Brandstadt, T.H. Lane, R.A. Gross, Organic Lett. 2005, 7(18), 3857–3860. “Sweet Silicones”: Biocatalytic Reactions to Form Organosilicon Carbohydrate Macromers”.CrossRefGoogle Scholar
  31. 31.
    B. Sahoo, K.F. Brandstadt, T.H. Lane, R.A. Gross, in “Polymer Biocatalysis and Biomaterials”, ACS Symposium Series, 2005, 900, 182–190. “Sweet silicones”: Biocatalytic reactions to form organosilicon carbohydrate macromers”.CrossRefGoogle Scholar
  32. 32.
    D. Henkensmeier, B. C. Abele, A. Candussio, J. Thiem, Polymer, 2004, 7053–7059, -“Synthesis, characterisation and degradability of polyamides derived from aldaric acids and chain end functionalised polydimethylsiloxanes”.Google Scholar
  33. 33.
    A. Domschke, D. Lohmann, J. Höpken, EP 0826158, 15/09/1999.Google Scholar
  34. 34.
    R. Wagner,; Y. Wu, L. Richter, T. Pfohl, S. Siegel, J. Weissmueller, J. Reiners, Appl. Organometal. Chem., 1996, 10(6), 421–435. “Silicon containing structures at interfaces. The wetting behavior of carbohydrate-modified Si surfactants on perfluorinated surfaces and the modification of rough metal surfaces by hydrophilic polysiloxane networks.”CrossRefGoogle Scholar
  35. 35.
    R. Wagner, L. Richter, Y. Wu, J. Weissmuller, J. Reiners, K.-D. Klein, D. Schaefer, S. Stadtmuller, in Organosilicon Chemistry III: From Molecules to Materials, N. Auner, J. Weis, Eds, 1998, 510–514.“Carbohydrate-modified siloxane surfactants: The effect of substructures on the wetting behavior on non polar solid surfaces.Google Scholar
  36. 36.
    R. Wagner, L. Richter, Y. Wu, J. Weissmuller, A. Kleewein, E. Hengge, Appl. Organometal. Chem., 1998, 12(4), 265–276. “Silicon-modified carbohydrate surfactants. VII: Impact of different silicon substructures on the wetting behavior of carbohydrate surfactants on low-energy surfaces – distance decay of donor-acceptor forces.”CrossRefGoogle Scholar
  37. 37.
    R. Wagner, Y. Wu, L. Richter, S. Siegel, J. Weissmuller, J. Reiners, Appl. Organometal. Chem., 1998, 12(12), 843–853. “Silicon-modified carbohydrate surfactants IX: dynamic wetting of a perfluorinated solid surface by solutions of a siloxane surfactant above and below the critical micelle concentration.”CrossRefGoogle Scholar
  38. 38.
    R. Wagner, Y. Wu, L. Richter, J. Reiners, J. Weissmuller, A. De Montigny, Appl. Organometal. Chem., 1999, 13(1), 21–28. “Silicon-modified carbohydrate surfactants. VIII. equilibrium wetting of perfluorinated solid surfaces by solutions of surfactants above and below the critical micelle concentration-surfactant distribution between liquid-vapor and solid-liquid interfaces.”Google Scholar
  39. 39.
    Eur. Polymer J., 2004, 40, 165–170.Google Scholar
  40. 40.
    Carbohydr. Polymers, 2006, 65, 321–326.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Juliette Fitremann
    • 1
  • Waêl Moukarzel
    • 1
  • Monique Mauzac
    • 1
  1. 1.Laboratoire des Interactions Moléculaires et Réactivité Chimique et PhotochimiqueUniversité de Toulouse, UMR 5623 CNRS – Université Paul SabatierToulouse Cedex 9France

Personalised recommendations