Adverse Features of Acquired Antihormone Resistance and Their Targeting

  • Stephen Hiscox
  • Nicola Jordan
  • Liam Morgan
  • Chris Smith
  • Lindy Goddard
  • Julia M.W. Gee
  • Robert I. Nicholson


Endocrine therapy is the treatment of choice in hormone receptor-positive breast cancer. However, the effectiveness of these agents is limited by the development of drug resistance, ultimately leading to disease progression and patient mortality. Cell models of endocrine resistance have demonstrated a role for altered growth factor signalling in the development of an endocrine insensitive phenotype. Significantly, recent studies have revealed that the acquisition of endocrine resistance in breast cancer is also accompanied by the development of an adverse cellular phenotype, with resistant cells exhibiting altered adhesive interactions, enhanced migratory and invasive behaviour, and a capacity to induce angiogenic responses in endothelium. Since invasion and metastasis of cancer cells is a major cause of mortality in cancer patients, elucidation of molecular mechanisms underlying the adverse cellular features that accompany acquired endocrine resistance and their subsequent targeting may provide a means of limiting the progression of such tumours in vivo.


Invasion Migration Metastasis Cell adhesion Cadherin Src Fak 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acconcia, F., Barnes, C.J. and Kumar, R. (2006). Estrogen and tamoxifen induce cytoskeletal remodeling and migration in endometrial cancer cells. Endocrinology, 147, 1203–12.PubMedGoogle Scholar
  2. Acconcia, F. and Kumar, R. (2006). Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Lett, 238, 1–14.PubMedGoogle Scholar
  3. Ali, N., Yoshizumi, M., Yano, S., Sone, S., Ohnishi, H., Ishizawa, K., Kanematsu, Y., Tsuchiya, K. and Tamaki, T. (2006). The novel src kinase inhibitor M475271 inhibits VEGF-induced vascular endothelial-cadherin and beta-catenin phosphorylation but increases their association. J Pharmacol Sci, 102, 112–20.PubMedGoogle Scholar
  4. Arpino, G., Wiechmann, L., Osborne, C.K., Schiff, R. (2008). Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29, 217–233.PubMedGoogle Scholar
  5. Arora, P., Cuevas, B.D., Russo, A., Johnson, G.L. and Trejo, J. (2008). Persistent transactivation of EGFR and ErbB2/HER2 by protease-activated receptor-1 promotes breast carcinoma cell invasion. Oncogene, 27, 4434–45.PubMedGoogle Scholar
  6. Aspenstrom, P., Fransson, A. and Saras, J. (2004). Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J, 377, 327–37.PubMedGoogle Scholar
  7. Bhowmick, N.A. and Moses, H.L. (2005). Tumor-stroma interactions. Curr Opin Genet Dev, 15, 97–101.PubMedGoogle Scholar
  8. Bhowmick, N.A., Neilson, E.G. and Moses, H.L. (2004). Stromal fibroblasts in cancer initiation and progression. Nature, 432, 332–7.PubMedGoogle Scholar
  9. Biscardi, J.S., Belsches, A.P. and Parsons, S.J. (1998). Characterization of human epidermal growth factor receptor and c-src interactions in human breast tumor cells. Mol Carcinog, 21, 261–72.PubMedGoogle Scholar
  10. Biscardi, J.S., Ishizawar, R.C., Silva, C.M. and Parsons, S.J. (2000). Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-src interactions in breast cancer. Breast Cancer Res, 2, 203–10.PubMedGoogle Scholar
  11. Borley, A.C., Barrett-Lee, P.J., Gee, J.M.W., Shaw, V., Nicholson, R.I. and Hiscox, S.E. (2007). Anti-estrogens promote an invasive phenotype in intercellular adhesion deficient breast cancer cells. Breast Cancer Res Treat, 106, 24.Google Scholar
  12. Bourguignon, L.Y., Zhu, H., Chu, A., Iida, N., Zhang, L. and Hung, M.C. (1997). Interaction between the adhesion receptor, CD44, and the oncogene product, p185HER2, promotes human ovarian tumor cell activation. J Biol Chem, 272, 27913–8.PubMedGoogle Scholar
  13. Britton, D.J., Hutcheson, I.R., Knowlden, J.M., Barrow, D., Giles, M., McClelland, R.A., Gee, J.M. and Nicholson, R.I. (2006). Bidirectional cross talk between ERalpha and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res Treat, 96, 131–46.PubMedGoogle Scholar
  14. Bunone, G., Briand, P.A., Miksicek, R.J. and Picard, D. (1996). Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. Embo J, 15, 2174–83.PubMedGoogle Scholar
  15. Campbell, R.A., Bhat-Nakshatri, P., Patel, N.M., Constantinidou, D., Ali, S. and Nakshatri, H. (2001). Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha. J Biol Chem, 276, 9817–9824.PubMedGoogle Scholar
  16. Carragher, N.O., Frame, M.C. (2004). Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol. 14 (5), 241–9.PubMedGoogle Scholar
  17. Castoria, G., Barone, M.V., Di Domenico, M., Bilancio, A., Ametrano, D., Migliaccio, A. and Auricchio, F. (1999). Non-transcriptional action of oestradiol and progestin triggers DNA synthesis. Embo J, 18, 2500–10.PubMedGoogle Scholar
  18. Castoria, G., Migliaccio, A., Bilancio, A., Di Domenico, M., de Falco, A., Lombardi, M., Fiorentino, R., Varricchio, L., Barone, M.V. and Auricchio, F. (2001). PI3-kinase in concert with src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. Embo J, 20, 6050–9.PubMedGoogle Scholar
  19. Chu, I., Arnaout, A., Loiseau, S., Sun, J., Seth, A., McMahon, C., Chun, K., Hennessy, B., Mills, G.B., Nawaz, Z. and Slingerland, J.M. (2007a). Src promotes estrogen-dependent estrogen receptor alpha proteolysis in human breast cancer. J Clin Invest, 117, 2205–15.Google Scholar
  20. Chu, I., Sun, J., Arnaout, A., Kahn, H., Hanna, W., Narod, S., Sun, P., Tan, C.K., Hengst, L. and Slingerland, J. (2007b). P27 phosphorylation by src regulates inhibition of cyclin E-cdk2. Cell, 128, 281–94.Google Scholar
  21. Comoglio, P.M., Giordano, S. and Trusolino, L. (2008). Drug development of MET inhibitors: Targeting oncogene addiction and expedience. Nat Rev Drug Discov, 7, 504–16.PubMedGoogle Scholar
  22. Conte, P., Guarneri, V. and Bengala, C. (2007). Evolving nonendocrine therapeutic options for metastatic breast cancer: How adjuvant chemotherapy influences treatment. Clin Breast Cancer, 7, 841–9.PubMedGoogle Scholar
  23. Contessa, J.N., Abell, A., Mikkelsen, R.B., Valerie, K. and Schmidt-Ullrich, R.K. (2006). Compensatory ErbB3/c-src signaling enhances carcinoma cell survival to ionizing radiation. Breast Cancer Res Treat, 95, 17–27.PubMedGoogle Scholar
  24. Deblois, G. and Giguere, V. (2003). Ligand-independent coactivation of ERalpha AF-1 by steroid receptor RNA activator (SRA) via MAPK activation. J Steroid Biochem Mol Biol, 85, 123–31.PubMedGoogle Scholar
  25. Fan, P., Wang, J., Santen, R.J. and Yue, W. (2007). Long-term treatment with tamoxifen facilitates translocation of estrogen receptor alpha Out Of the nucleus and enhances its interaction with EGFR in MCF-7 breast cancer cells. 10.1158/0008-5472.Can-06-1020. Cancer Res, 67, 1352–1360.PubMedGoogle Scholar
  26. Feng, W., Webb, P., Nguyen, P., Liu, X., Li, J., Karin, M. and Kushner, P.J. (2001). Potentiation of estrogen receptor activation function 1 (AF-1) by src/JNK through a serine 118-independent pathway. Mol Endocrinol, 15, 32–45.PubMedGoogle Scholar
  27. Folgiero, V., Avetrani, P., Bon, G., Di Carlo, S.E., Fabi, A., Nistico, C., Vici, P., Melucci, E., Buglioni, S., Perracchio, L., Sperduti, I., Rosano, L., Sacchi, A., Mottolese, M. and Falcioni, R. (2008). Induction of ErbB-3 expression by alpha6beta4 integrin contributes to tamoxifen resistance in ERbeta1-negative breast carcinomas. PLoS ONE, 3, e1592.PubMedGoogle Scholar
  28. Fuchs, B.C., Fujii, T., Dorfman, J.D., Goodwin, J.M., Zhu, A.X., Lanuti, M. and Tanabe, K.K. (2008). Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res, 68, 2391–9.PubMedGoogle Scholar
  29. Ghoussoub, R.A., Dillon, D.A., D’Aquila, T., Rimm, E.B., Fearon, E.R. and Rimm, D.L. (1998). Expression of c-met is a strong independent prognostic factor in breast carcinoma. Cancer, 82, 1513–20.PubMedGoogle Scholar
  30. Giehl, K. and Menke, A. (2008). Microenvironmental regulation of E-cadherin-mediated adherens junctions. Front Biosci, 13, 3975–85.PubMedGoogle Scholar
  31. Gong, Y., Sun, X., Huo, L., Wiley, E.L. and Rao, M.S. (2005). Expression of cell adhesion molecules, CD44s and E-cadherin, and microvessel density in invasive micropapillary carcinoma of the breast. Histopathology, 46, 24–30.PubMedGoogle Scholar
  32. Han, L.Y., Landen, C.N., Trevino, J.G., Halder, J., Lin, Y.G., Kamat, A.A., Kim, T.J., Merritt, W.M., Coleman, R.L., Gershenson, D.M., Shakespeare, W.C., Wang, Y., Sundaramoorth, R. and Metcalf, C.A. (2006). Antiangiogenic and antitumor effects of SRC inhibition in ovarian carcinoma. Cancer Res, 66, 8633–9.PubMedGoogle Scholar
  33. Harper, M.E., Smith, C. and Nicholson, R.I. (2005). Upregulation of CD44s and variants in anti-hormone resistant breast cancer cells. Eur J Cancer, 3, A71.Google Scholar
  34. Haslam, S.Z. and Woodward, T.L. (2003). Host microenvironment in breast cancer development: Epithelial-cell-stromal-cell interactions and steroid hormone action in normal and cancerous mammary gland. Breast Cancer Res, 5, 208–15.PubMedGoogle Scholar
  35. Hennequin, L.F., Allen, J., Breed, J., Curwen, J., Fennell, M., Green, T.P., Lambert-van der Brempt, C., Morgentin, R., Norman, R.A., Olivier, A., Otterbein, L., Ple, P.A., Warin, N. and Costello, G. (2006). N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5- (tetrahydro-2h-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-src/abl kinase inhibitor. J Med Chem, 49, 6465–88.PubMedGoogle Scholar
  36. Herynk, M.H., Beyer, A.R., Cui, Y., Weiss, H., Anderson, E., Green, T.P. and Fuqua, S.A. (2006). Cooperative action of tamoxifen and c-src inhibition in preventing the growth of estrogen receptor-positive human breast cancer cells. Mol Cancer Ther, 5, 3023–31.PubMedGoogle Scholar
  37. Hiscox, S., Jiang, W.G., Obermeier, K., Taylor, K., Morgan, L., Burmi, R., Barrow, D. and Nicholson, R.I. (2006a). Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int J Cancer, 118, 290–301.Google Scholar
  38. Hiscox, S., Jordan, N.J., Goddard, L., Smith, C., Harper, M., Gee, J. and Nicholson, R. (2008a). Overexpression of CD44 augments tamoxifen-resistant breast cancer cell response to heregulin. Breast Caner Research, 10, S19.Google Scholar
  39. Hiscox, S., Jordan, N.J., Jiang, W., Harper, M., McClelland, R., Smith, C. and Nicholson, R.I. (2006b). Chronic exposure to fulvestrant promotes overexpression of the c-met receptor in breast cancer cells: Implications for tumour-stroma interactions. Endocr Relat Cancer, 13, 1085–99.Google Scholar
  40. Hiscox, S., Jordan, N.J., Morgan, L., Green, T.P. and Nicholson, R.I. (2007). Src kinase promotes adhesion-independent activation of FAK and enhances cellular migration in tamoxifen-resistant breast cancer cells. Clin Exp Metastasis, 24, 157–67.PubMedGoogle Scholar
  41. Hiscox, S., Morgan, L., Barrow, D., Dutkowskil, C., Wakeling, A. and Nicholson, R.I. (2004a). Tamoxifen resistance in breast cancer cells is accompanied by an enhanced motile and invasive phenotype: Inhibition by gefitinib (‘iressa’, ZD1839). Clin Exp Metastasis, 21, 201–12.Google Scholar
  42. Hiscox, S., Morgan, L., Green, T. and Nicholson, R.I. (2004b). Reduction of in vitro metastatic potential of tamoxifen-resistant breast cancer cells following inhibition of src kinase activity by AZD0530. Eur J Cancer, 2, 121–122.Google Scholar
  43. Hiscox, S., Morgan, L., Green, T. and Nicholson, R.I. (2006c). Src as a therapeutic target in anti-hormone/anti-growth factor-resistant breast cancer. Endocr Relat Cancer, 13 (suppl. 1),S53–9.Google Scholar
  44. Hiscox, S., Morgan, L., Green, T.P., Barrow, D., Gee, J. and Nicholson, R.I. (2006d). Elevated src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res Treat, 97, 263–74.Google Scholar
  45. Hiscox, S., Jordan, N.J., Smith, C., James, M., Morgan, L., Taylor, K.M., Green, T.P., Nicholson, R.I. (2008b). Dual targeting of src and ER prevents acquired antihormone resistance in breast cancer cells. Breast Cancer Res Treat. May 21. [Epub ahead of print].Google Scholar
  46. Howell, A., Bundred, N.J., Cuzick, J., Allred, D.C. and Clarke, R. (2008). Response and resistance to the endocrine prevention of breast cancer. Adv Exp Med Biol, 617, 201–11.PubMedGoogle Scholar
  47. Hugo, H., Ackland, M.L., Blick, T., Lawrence, M.G., Clements, J.A., Williams, E.D. and Thompson, E.W. (2007). Epithelial – mesenchymal and mesenchymal – epithelial transitions in carcinoma progression. J Cell Physiol, 213, 374–83.PubMedGoogle Scholar
  48. Ignar-Trowbridge, D.M., Teng, C.T., Ross, K.A., Parker, M.G., Korach, K.S. and McLachlan, J.A. (1993). Peptide growth factors elicit estrogen receptor-dependent transcriptional activation of an estrogen-responsive element. Mol Endocrinol, 7, 992–8.PubMedGoogle Scholar
  49. Ishizawar, R. and Parsons, S.J. (2004). C-src and cooperating partners in human cancer. Cancer Cell, 6, 209–14.PubMedGoogle Scholar
  50. Ishizawar, R.C., Miyake, T. and Parsons, S.J. (2007). C-src modulates ErbB2 and ErbB3 heterocomplex formation and function. Oncogene, 26, 3503–10.PubMedGoogle Scholar
  51. Jiang, W.G., Grimshaw, D., Martin, T.A., Davies, G., Parr, C., Watkins, G., Lane, J., Abounader, R., Laterra, J. and Mansel, R.E. (2003). Reduction of stromal fibroblast-induced mammary tumor growth, by retroviral ribozyme transgenes to hepatocyte growth factor/scatter factor and its receptor, c-MET. Clin Cancer Res, 9, 4274–81.PubMedGoogle Scholar
  52. Jones, H.E., Goddard, L., Gee, J.M., Hiscox, S., Rubini, M., Barrow, D., Knowlden, J.M., Williams, S., Wakeling, A.E. and Nicholson, R.I. (2004). Insulin-like growth factor-i receptor signalling and acquired resistance to gefitinib (ZD1839; iressa) in human breast and prostate cancer cells. Endocr Relat Cancer, 11, 793–814.PubMedGoogle Scholar
  53. Jordan, N.J., Smith, C., Gee, J., Nicholson, R.I. and Hiscox, S. (2008). CD44 is overexpressed in fulvestrant-resistant breast cancer cells: Potentiation of response to HGF. SubmittedGoogle Scholar
  54. Kim, K., Barhoumi, R., Burghardt, R. and Safe, S. (2005). Analysis of estrogen receptor alpha-sp1 interactions in breast cancer cells by fluorescence resonance energy transfer. Mol Endocrinol, 19, 843–54.PubMedGoogle Scholar
  55. Knowlden, J.M., Hutcheson, I.R., Jones, H.E., Madden, T., Gee, J.M., Harper, M.E., Barrow, D., Wakeling, A.E. and Nicholson, R.I. (2003). Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology, 144, 1032–44.PubMedGoogle Scholar
  56. Kurokawa, H. and Arteaga, C.L. (2001). Inhibition of erbB receptor (HER) tyrosine kinases as a strategy to abrogate antiestrogen resistance in human breast cancer. Clin Cancer Res, 7,4436–4442.Google Scholar
  57. Lannigan, D.A. (2003). Estrogen receptor phosphorylation. Steroids, 68, 1–9.PubMedGoogle Scholar
  58. Lengyel, E., Prechtel, D., Resau, J.H., Gauger, K., Welk, A., Lindemann, K., Salanti, G., Richter, T., Knudsen, B., Vande Woude, G.F. and Harbeck, N. (2005). C-met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of her2/neu. Int J Cancer, 113, 678–82.PubMedGoogle Scholar
  59. Levin, E.R. (2003). Bidirectional signaling between the estrogen receptor and the epidermal growth factor receptor. Mol Endocrinol, 17, 309–17.PubMedGoogle Scholar
  60. Maa, M.C., Leu, T.H., McCarley, D.J., Schatzman, R.C. and Parsons, S.J. (1995). Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-src: Implications for the etiology of multiple human cancers. Proc Natl Acad Sci U S A, 92, 6981–5.PubMedGoogle Scholar
  61. MacGregor, J.I. and Jordan, V.C. (1998). Basic guide to the mechanisms of antiestrogen action. Pharmacol Rev, 50, 151–96.PubMedGoogle Scholar
  62. Mayer, S., Zur Hausen, A., Watermann, D.O., Stamm, S., Jager, M., Gitsch, G. and Stickeler, E. (2008). Increased soluble CD44 concentrations are associated with larger tumor size and lymph node metastasis in breast cancer patients. J Cancer Res Clin Oncol.Google Scholar
  63. Migliaccio, A., Castoria, G., Di Domenico, M., Ciociola, A., Lombardi, M., De Falco, A., Nanayakkara, M., Bottero, D., De Stasio, R., Varricchio, L. and Auricchio, F. (2006). Crosstalk between EGFR and extranuclear steroid receptors. Ann N Y Acad Sci, 1089, 194–200.PubMedGoogle Scholar
  64. Migliaccio, A., Castoria, G., Di Domenico, M., de Falco, A., Bilancio, A., Lombardi, M., Barone, M.V., Ametrano, D., Zannini, M.S., Abbondanza, C. and Auricchio, F. (2000). Steroid-induced androgen receptor-oestradiol receptor beta-src complex triggers prostate cancer cell proliferation. Embo J, 19, 5406–17.PubMedGoogle Scholar
  65. Migliaccio, A., Di Domenico, M., Castoria, G., de Falco, A., Bontempo, P., Nola, E. and Auricchio, F. (1996). Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. Embo J, 15, 1292–300.PubMedGoogle Scholar
  66. Migliaccio, A., Di Domenico, M., Castoria, G., Nanayakkara, M., Lombardi, M., de Falco, A., Bilancio, A., Varricchio, L., Ciociola, A. and Auricchio, F. (2005). Steroid receptor regulation of epidermal growth factor signaling through src in breast and prostate cancer cells: Steroid antagonist action. Cancer Res, 65, 10585–93.PubMedGoogle Scholar
  67. Mitra, S.K., Lim, S.T., Chi, A. and Schlaepfer, D.D. (2006). Intrinsic focal adhesion kinase activity controls orthotopic breast carcinoma metastasis via the regulation of urokinase plasminogen activator expression in a syngeneic tumor model. Oncogene, 25, 4429–40.PubMedGoogle Scholar
  68. Mitra, S.K. and Schlaepfer, D.D. (2006). Integrin-regulated FAK-src signaling in normal and cancer cells. Curr Opin Cell Biol, 18, 516–23.PubMedGoogle Scholar
  69. Nicholson, R.I., Gee, J.M. and Harper, M.E. (2001). EGFR and cancer prognosis. Eur J Cancer, 37(suppl. 4), S9–15.PubMedGoogle Scholar
  70. Nicholson, R.I. and Johnston, S.R. (2005). Endocrine therapy – current benefits and limitations. Breast Cancer Res Treat, 93(suppl. 1), S3–10.PubMedGoogle Scholar
  71. Nicholson, R.I., Staka, C., Boyns, F., Hutcheson, I.R. and Gee, J.M. (2004). Growth factor-driven mechanisms associated with resistance to estrogen deprivation in breast cancer: New opportunities for therapy. Endocr Relat Cancer, 11, 623–41.PubMedGoogle Scholar
  72. Oktay, M., Wary, K.K., Dans, M., Birge, R.B. and Giancotti, F.G. (1999). Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. J Cell Biol, 145, 1461–9.PubMedGoogle Scholar
  73. Osborne, C.K. and Schiff, R. (2003). Growth factor receptor cross-talk with estrogen receptor as a mechanism for tamoxifen resistance in breast cancer. Breast, 12, 362–7.PubMedGoogle Scholar
  74. Ouhtit, A., Abd Elmageed, Z.Y., Abdraboh, M.E., Lioe, T.F. and Raj, M.H. (2007). In vivo evidence for the role of CD44s in promoting breast cancer metastasis to the liver. Am J Pathol, 171, 2033–9.PubMedGoogle Scholar
  75. Parisot, J.P., Hu, X.F., DeLuise, M. and Zalcberg, J.R. (1999). Altered expression of the IGF-1 receptor in a tamoxifen-resistant human breast cancer cell line. Br J Cancer, 79, 693–700.PubMedGoogle Scholar
  76. Planas-Silva, M.D., Bruggeman, R.D., Grenko, R.T. and Stanley Smith, J. (2006). Role of c-src and focal adhesion kinase in progression and metastasis of estrogen receptor-positive breast cancer. Biochem Biophys Res Commun, 341, 73–81.PubMedGoogle Scholar
  77. Planas-Silva, M.D. and Hamilton, K.N. (2006). Targeting c-src kinase enhances tamoxifen’s inhibitory effect on cell growth by modulating expression of cell cycle and survival proteins. Cancer Chemother Pharmacol.Google Scholar
  78. Radisky, D.C. and Bissell, M.J. (2007). NF-kappaB links oestrogen receptor signalling and EMT. Nat Cell Biol, 9, 361–3.PubMedGoogle Scholar
  79. Rho, J.K., Choi, Y.J., Lee, J.K., Ryoo, B.Y., Na, I.I., Yang, S.H., Kim, C.H. and Lee, J.C. (2008). Epithelial to mesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity to EGFR inhibitors in A549, a non-small cell lung cancer cell line. Lung Cancer Jul 1. [Epub ahead of print].Google Scholar
  80. Riggins, R.B., Thomas, K.S., Ta, H.Q., Wen, J., Davis, R.J., Schuh, N.R., Donelan, S.S., Owen, K.A., Gibson, M.A., Shupnik, M.A., Silva, C.M., Parsons, S.J., Clarke, R. and Bouton, A.H. (2006). Physical and functional interactions between cas and c-src induce tamoxifen resistance of breast cancer cells through pathways involving epidermal growth factor receptor and signal transducer and activator of transcription 5b. Cancer Res, 66, 7007–15.PubMedGoogle Scholar
  81. Riley, D., Carragher, N.O., Frame, M.C. and Wyke, J.A. (2001). The mechanism of cell cycle regulation by v-src. Oncogene, 20, 5941–50.PubMedGoogle Scholar
  82. Rys, J., Kruczak, A., Lackowska, B., Jaszcz-Gruchala, A., Brandys, A., Stelmach, A. and Reinfuss, M. (2003). The role of CD44v3 expression in female breast carcinomas. Pol J Pathol, 54, 243–7.PubMedGoogle Scholar
  83. Sandilands, E. and Frame, M.C. (2008). Endosomal trafficking of src tyrosine kinase. Trends Cell Biol, 18, 322–9.PubMedGoogle Scholar
  84. Screaton, G.R., Bell, M.V., Jackson, D.G., Cornelis, F.B., Gerth, U. and Bell, J.I. (1992). Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci U S A, 89, 12160–4.PubMedGoogle Scholar
  85. Shah, Y.M. and Rowan, B.G. (2005). The src kinase pathway promotes tamoxifen agonist action in ishikawa endometrial cells through phosphorylation-dependent stabilization of estrogen receptor (alpha) promoter interaction and elevated steroid receptor coactivator 1 activity. Mol Endocrinol, 19, 732–48.PubMedGoogle Scholar
  86. Shaw, V.E., Gee, J., McClelland, R., Morgan, H., Rushmere, N. and Nicholson, R.I. (2005). Identification of anti-hormone induced genes as potential therapeutic targets in breast cancer. Proc Amer Assoc Cancer Res, 46, A3706.Google Scholar
  87. Shupnik, M.A. (2004). Crosstalk between steroid receptors and the c-src-receptor tyrosine kinase pathways: Implications for cell proliferation. Oncogene, 23, 7979–89.PubMedGoogle Scholar
  88. Sumi, D. and Ignarro, L.J. (2005). Sp1 transcription factor expression is regulated by estrogen-related receptor alpha1. Biochem Biophys Res Commun, 328, 165–72.PubMedGoogle Scholar
  89. Summy, J.M. and Gallick, G.E. (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev, 22, 337–58.PubMedGoogle Scholar
  90. Summy, J.M. and Gallick, G.E. (2006). Treatment for advanced tumors: SRC reclaims center stage. Clin Cancer Res, 12, 1398–401.PubMedGoogle Scholar
  91. Tan, M., Li, P., Klos, K.S., Lu, J., Lan, K.H., Nagata, Y., Fang, D., Jing, T. and Yu, D. (2005). ErbB2 promotes src synthesis and stability: Novel mechanisms of src activation that confer breast cancer metastasis. Cancer Res, 65, 1858–67.PubMedGoogle Scholar
  92. Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2, 442–54.PubMedGoogle Scholar
  93. Toole, B.P. and Slomiany, M.G. (2008). Hyaluronan: a constitutive regulator of chemoresistance and malignancy in cancer cells. Semin Cancer Biol, 18, 244–50.PubMedGoogle Scholar
  94. Tovey, S., Dunne, B., Witton, C.J., Forsyth, A., Cooke, T.G. and Bartlett, J.M. (2005). Can molecular markers predict when to implement treatment with aromatase inhibitors in invasive breast cancer? Clin Cancer Res, 11, 4835–42.PubMedGoogle Scholar
  95. Trevino, J.G., Summy, J.M., Lesslie, D.P., Parikh, N.U., Hong, D.S., Lee, F.Y., Donato, N.J., Abbruzzese, J.L., Baker, C.H. and Gallick, G.E. (2006). Inhibition of SRC expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model. Am J Pathol, 168, 962–72.PubMedGoogle Scholar
  96. Tsatas, D., Kanagasundaram, V., Kaye, A. and Novak, U. (2002). EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines. J Clin Neurosci, 9, 282–8.PubMedGoogle Scholar
  97. Ueno, Y., Sakurai, H., Tsunoda, S., Choo, M.K., Matsuo, M., Koizumi, K., Saiki, I., Arora, P., Cuevas, B.D., Russo, A., Johnson, G.L. and Trejo, J. (2008). Heregulin-induced activation of ErbB3 by EGFR tyrosine kinase activity promotes tumor growth and metastasis in melanoma cells. Persistent transactivation of EGFR and ErbB2/HER2 by protease-activated receptor-1 promotes breast carcinoma cell invasion. Int J Cancer, 123, 340–7.PubMedGoogle Scholar
  98. Vadlamudi, R.K., Sahin, A.A., Adam, L., Wang, R.A. and Kumar, R. (2003). Heregulin and HER2 signaling selectively activates c-src phosphorylation at tyrosine 215. FEBS Lett, 543, 76–80.PubMedGoogle Scholar
  99. Varricchio, L., Migliaccio, A., Castoria, G., Yamaguchi, H., de Falco, A., Di Domenico, M., Giovannelli, P., Farrar, W., Appella, E. and Auricchio, F. (2007). Inhibition of estradiol receptor/src association and cell growth by an estradiol receptor alpha tyrosine-phosphorylated peptide. Mol Cancer Res, 5, 1213–21.PubMedGoogle Scholar
  100. Varshochi, R., Halim, F., Sunters, A., Alao, J.P., Madureira, P.A., Hart, S.M., Ali, S., Vigushin, D.M., Coombes, R.C. and Lam, E.W. (2005). ICI182,780 induces p21waf1 gene transcription through releasing histone deacetylase 1 and estrogen receptor alpha from sp1 sites to induce cell cycle arrest in MCF-7 breast cancer cell line. J. Biol Chem, 280, 3185–96.PubMedGoogle Scholar
  101. Watanabe, O., Kinoshita, J., Shimizu, T., Imamura, H., Hirano, A., Okabe, T., Aiba, M. and Ogawa, K. (2005). Expression of a CD44 variant and VEGF-c and the implications for lymphatic metastasis and long-term prognosis of human breast cancer. J Exp Clin Cancer Res, 24, 75–82.PubMedGoogle Scholar
  102. Wells, A., Kassis, J., Solava, J., Turner, T. and Lauffenburger, D.A. (2002). Growth factor-induced cell motility in tumor invasion. Acta Oncol, 41, 124–30.PubMedGoogle Scholar
  103. Wessler, S., Otto, C., Wilck, N., Stangl, V. and Fritzemeier, K.H. (2006). Identification of estrogen receptor ligands leading to activation of non-genomic signaling pathways while exhibiting only weak transcriptional activity. J Steroid Biochem Mol Biol, 98, 25–35.PubMedGoogle Scholar
  104. Wilson, C.A. and Slamon, D.J. (2005). Evolving understanding of growth regulation in human breast cancer: Interactions of the steroid and peptide growth regulatory pathways. J Natl Cancer Inst, 97, 1238–9.PubMedGoogle Scholar
  105. Wilson, G.R., Cramer, A., Welman, A., Knox, F., Swindell, R., Kawakatsu, H., Clarke, R.B., Dive, C. and Bundred, N.J. (2006). Activated c-SRC in ductal carcinoma in situ correlates with high tumour grade, high proliferation and HER2 positivity. Br J Cancer, 95, 1410–4.PubMedGoogle Scholar
  106. Wong, C.W., McNally, C., Nickbarg, E., Komm, B.S. and Cheskis, B.J. (2002). Estrogen receptor-interacting protein that modulates its nongenomic activity-crosstalk with src/erk phosphorylation cascade. Proc Natl Acad Sci U S A, 99, 14783–8.PubMedGoogle Scholar
  107. Zhang, X., Li, Y., Dai, C., Yang, J., Mundel, P. and Liu, Y. (2003). Sp1 and sp3 transcription factors synergistically regulate HGF receptor gene expression in kidney. Am J Physiol Renal Physiol, 284, F82–94.PubMedGoogle Scholar
  108. Zhang, X., Yang, J., Li, Y. and Liu, Y. (2005). Both sp1 and smad participate in mediating TGF-beta1-induced HGF receptor expression in renal epithelial cells. Am J Physiol Renal Physiol, 288, F16–26.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Stephen Hiscox
    • 1
  • Nicola Jordan
  • Liam Morgan
  • Chris Smith
  • Lindy Goddard
  • Julia M.W. Gee
  • Robert I. Nicholson
  1. 1.Tenovus Centre for Cancer Research Welsh School of PharmacyCardiff UniversityCardiffUK

Personalised recommendations