HSP90 Inhibition as an Anticancer Strategy: Novel Approaches and Future Directions

  • Marissa V. Powers
  • Paul Workman


Heat shock protein 90 is an ATP-dependent molecular chaperone involved in the maturation and stabilisation of a wide-range of proteins in both the presence and absence of cellular stress. Within the ever expanding list of HSP90 client proteins is a broad range of bona fide oncoproteins. This has thrust HSP90 into the spotlight as an exciting anticancer drug target. Several natural product and semi-synthetic derivatives have been described which inhibit the activity of HSP90 by preventing the association of the N-terminal domain with ATP. This approach is exemplified by 17-AAG which is the first-in-class HSP90 inhibitor to complete phase I clinical trial and provide proof-of-concept for this approach with the observation of responses in patients with malignant melanoma, multiple myeloma, prostate and breast carcinoma. Research is now focused on the design of more potent and drug-like synthetic small-molecule inhibitors. This article provides a personal perspective of the advances made in the development of novel HSP90 inhibitors with particular emphasis on work from our own laboratory. We will also review alternative approaches to inhibit HSP90 which are currently being evaluated. These include selectively inhibiting particular HSP90 isoforms, blocking co-chaperone interactions, designing substrate mimetics and modulating the post-translational modifications of HSP90.


17-AAG Heat shock protein inhibitors HSP90 siRNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas, S., Bhoumik, A., Dahl, R., Vasile, S., Krajewski, S., Cosford, N.D. (2007) Preclinical studies of celastrol and acetyl isogambogic acid in melanoma. Clin Cancer Res, 13, 6769–6778.PubMedGoogle Scholar
  2. Ali, M.M., Roe, S.M., Vaughan, C.K., Meyer, P., Panaretou, B., Piper, P.W., Prodromou, C., Pearl, L.H. (2006) Crystal structure of an hsp90-nucleotide-p23/sba1 closed chaperone complex. Nature, 440, 1013–1017.PubMedGoogle Scholar
  3. Argon, Y., Simen, B.B. (1999) GRP94, an ER chaperone with protein and peptide binding properties. Semin Cell Dev Biol, 10, 495–505.PubMedGoogle Scholar
  4. Bali, P., Pranpat, M., Bradner, J., Balasis, M., Fiskus, W., Guo, F., Rocha, K., Kumaraswamy, S., Boyapalle, S., Atadja, P., Seto, E., Bhalla, K. (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem, 280, 26729–26734.PubMedGoogle Scholar
  5. Banerji, U., Affolter, A., Judson, I., Marais, R., Workman, P. (2008a) BRAF and NRAS mutations in melanoma: Potential relationships to clinical response to HSP90 inhibitors. Mol Cancer Ther, 7, 737–739.Google Scholar
  6. Banerji, U., O’Donnell, A., Scurr, M., Pacey, S., Stapleton, S., Asad, Y., Simmons, L., Maloney, A., Raynaud, F., Campbell, M., Walton, M., Lakhani, S., Kaye, S., Workman, P., Judson, I. (2005a) Phase i pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol, 23, 4152–4161.Google Scholar
  7. Banerji, U., Sain, N., Sharp, S.Y., Valenti, M., Asad, Y., Ruddle, R., Raynaud, F., Walton, M., Eccles, S.A., Judson, I., Jackman, A.L., Workman, P. (2008b) An in vitro and in vivo study of the combination of the heat shock protein inhibitor 17-allylamino-17-demethoxygeldanamycin and carboplatin in human ovarian cancer models. Cancer Chemother Pharmacol 62(5), 769–78.Google Scholar
  8. Banerji, U., Walton, M., Raynaud, F., Grimshaw, R., Kelland, L., Valenti, M., Judson, I., Workman, P. (2005b) Pharmacokinetic-pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft models. Clin Cancer Res, 11, 7023–7032.Google Scholar
  9. Beliakoff, J., Whitesell, L. (2004) Hsp90: An emerging target for breast cancer therapy. Anticancer Drugs, 15, 651–662.PubMedGoogle Scholar
  10. Bisht, K.S., Bradbury, C.M., Mattson, D., Kaushal, A., Sowers, A., Markovina, S., Ortiz, K.L., Sieck, L.K., Isaacs, J.S., Brechbiel, M.W., Mitchell, J.B., Neckers, L.M., Gius, D. (2003) Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. Cancer Res, 63, 8984–8995.PubMedGoogle Scholar
  11. Brough, P.A., Aherne, W., Barril, X., Borgognoni, J., Boxall, K., Cansfield, J.E., Cheung, K.M., Collins, I., Davies, N.G., Drysdale, M.J., Dymock, B., Eccles, S.A., Finch, H., Fink, A., Hayes, A., Howes, R., Hubbard, R.E., James, K., Jordan, A.M., Lockie, A., Martins, V., Massey, A., Matthews, T.P., McDonald, E., Northfield, C.J., Pearl, L.H., Prodromou, C., Ray, S., Raynaud, F.I., Roughley, S.D., Sharp, S.Y., Surgenor, A., Walmsley, D.L., Webb, P., Wood, M., Workman, P., Wright, L. (2008) 4, 5-Diarylisoxazole hsp90 chaperone inhibitors: Potential therapeutic agents for the treatment of cancer. J Med Chem, 51, 196–218.PubMedGoogle Scholar
  12. Calderwood, S.K., Khaleque, M.A., Sawyer, D.B., Ciocca, D.R. (2006) Heat shock proteins in cancer: Chaperones of tumorigenesis. Trends Biochem Sci, 31, 164–172.PubMedGoogle Scholar
  13. Chavany, C., Mimnaugh, E., Miller, P., Bitton, R., Nguyen, P., Trepel, J., Whitesell, L., Schnur, R., Moyer, J., Neckers, L. (1996) P185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2. J Biol Chem, 271, 4974–4977.PubMedGoogle Scholar
  14. Chen, B., Piel, W.H., Gui, L., Bruford, E. (2005) The HSP90 family of genes in the human genome: Insights into their divergence and evolution. Genomics, 86, 627–637.PubMedGoogle Scholar
  15. Chen, S., Smith, D.F. (1998) Hop as an adaptor in the heat shock protein 70(hsp70) and hsp90 chaperone machinery. J Biol Chem, 273, 35194–35200.PubMedGoogle Scholar
  16. Cheung, K.M., Matthews, T.P., James, K., Rowlands, M.G., Boxall, K.J., Sharp, S.Y., Maloney, A., Roe, S.M., Prodromou, C., Pearl, L.H., Aherne, G.W., McDonald, E., Workman, P. (2005) The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3, 4-diarylpyrazole class of hsp90 inhibitors. Bioorg Med Chem Lett, 15, 3338–3343.PubMedGoogle Scholar
  17. Chiosis, G. (2006) Discovery and development of purine-scaffold hsp90 inhibitors. Curr Top Med Chem, 6, 1183–1191.PubMedGoogle Scholar
  18. Clarke, P.A., Hostein, I., Banerji, U., Stefano, F.D., Maloney, A., Walton, M., Judson, I., Workman, P. (2000) Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene, 19, 4125–4133.PubMedGoogle Scholar
  19. Connell, P., Ballinger, C.A., Jiang, J., Wu, Y., Thompson, L.J., Hohfeld, J., Patterson, C. (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol, 3, 93–96.PubMedGoogle Scholar
  20. Cortajarena, A.L., Yi, F., Regan, L. (2008) Designed TPR modules as novel anticancer agents. ACS Chem Biol, 3, 161–166.PubMedGoogle Scholar
  21. da Rocha Dias, S., Friedlos, F., Light, Y., Springer, C., Workman, P., Marais, R. (2005) Activated B-RAF is an hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res, 65, 10686–10691.Google Scholar
  22. Davenport, E.L., Moore, H.E., Dunlop, A.S., Sharp, S.Y., Workman, P., Morgan, G.J., Davies, F.E. (2007) Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells. Blood, 110, 2641–2649.PubMedGoogle Scholar
  23. Davies, H., Bignell, G.R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M.J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B.A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G.J., Bigner, D.D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J.W., Leung, S.Y., Yuen, S.T., Weber, B.L., Seigler, H.F., Darrow, T.L., Paterson, H., Marais, R., Marshall, C.J., Wooster, R., Stratton, M.R., and Futreal, P.A. (2002) Mutations of the BRAF gene in human cancer. Nature, 417, 949–954.PubMedGoogle Scholar
  24. Demand, J., Alberti, S., Patterson, C., and Hohfeld, J. (2001) Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol, 11, 1569–1577.PubMedGoogle Scholar
  25. Dollins, D.E., Immormino, R.M., and Gewirth, D.T. (2005) Structure of unliganded GRP94, the endoplasmic reticulum hsp90. Basis for nucleotide-induced conformational change. J Biol Chem, 280, 30438–30447.PubMedGoogle Scholar
  26. Dymock, B.W., Barril, X., Brough, P.A., Cansfield, J.E., Massey, A., McDonald, E., Hubbard, R.E., Surgenor, A., Roughley, S.D., Webb, P., Workman, P., Wright, L., and Drysdale, M.J. (2005) Novel, potent small-molecule inhibitors of the molecular chaperone hsp90 discovered through structure-based design. J Med Chem, 48, 4212–4215.PubMedGoogle Scholar
  27. Eccles, S.A., Massey, A., Raynaud, F.I., Sharp, S.Y., Box, G., Valenti, M., Patterson, L., de Haven, B.A., Gowan, S., Boxall, F., Aherne, W., Rowlands, M., Hayes, A., Martins, V., Urban, F., Boxall, K., Prodromou, C., Pearl, L., James, K., Matthews, T.P., Cheung, K.M., Kalusa, A., Jones, K., McDonald, E., Barril, X., Brough, P.A., Cansfield, J.E., Dymock, B., Drysdale, M.J., Finch, H., Howes, R., Hubbard, R.E., Surgenor, A., Webb, P., Wood, M., Wright, L., and Workman, P. (2008) NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res, 68, 2850–2860.PubMedGoogle Scholar
  28. Edlundh-Rose, E., Egyhazi, S., Omholt, K., Mansson-Brahme, E., Platz, A., Hansson, J., and Lundeberg, J. (2006) NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. Melanoma Res, 16, 471–478.PubMedGoogle Scholar
  29. Egorin, M.J., Rosen, D.M., Wolff, J.H., Callery, P.S., Musser, S.M., and Eiseman, J.L. (1998) Metabolism of 17-(allylamino)-17-demethoxygeldanamycin(NSC 330507) by murine and human hepatic preparations. Cancer Res, 58, 2385–2396.PubMedGoogle Scholar
  30. Enmon, R., Yang, W.H., Ballangrud, A.M., Solit, D.B., Heller, G., Rosen, N., Scher, H.I., and Sgouros, G. (2003) Combination treatment with 17-N-allylamino-17-demethoxy geldanamycin and acute irradiation produces supra-additive growth suppression in human prostate carcinoma spheroids. Cancer Res, 63, 8393–8399.PubMedGoogle Scholar
  31. Eustace, B.K., Sakurai, T., Stewart, J.K., Yimlamai, D., Unger, C., Zehetmeier, C., Lain, B., Torella, C., Henning, S.W., Beste, G., Scroggins, B.T., Neckers, L., Ilag, L.L., and Jay, D.G. (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol, 6, 507–514.PubMedGoogle Scholar
  32. Felts, S.J., Owen, B.A., Nguyen, P., Trepel, J., Donner, D.B., and Toft, D.O. (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem, 275, 3305–3312.PubMedGoogle Scholar
  33. Frey, S., Leskovar, A., Reinstein, J., and Buchner, J. (2007) The ATPase cycle of the endoplasmic chaperone grp94. J Biol Chem, 282, 35612–35620.PubMedGoogle Scholar
  34. Fujiwara, H., Yamakuni, T., Ueno, M., Ishizuka, M., Shinkawa, T., Isobe, T., and Ohizumi, Y. (2004) IC101 induces apoptosis by akt dephosphorylation via an inhibition of heat shock protein 90-ATP binding activity accompanied by preventing the interaction with akt in L1210 cells. J Pharmacol Exp Ther, 310, 1288–1295.PubMedGoogle Scholar
  35. Gabai, V.L., Budagova, K.R., and Sherman, M.Y. (2005) Increased expression of the major heat shock protein hsp72 in human prostate carcinoma cells is dispensable for their viability but confers resistance to a variety of anticancer agents. Oncogene, 24, 3328–3338.PubMedGoogle Scholar
  36. Gallegos Ruiz, M.I., Floor, K., Roepman, P., Rodriguez, J.A., Meijer, G.A., Mooi, W.J., Jassem, E., Niklinski, J., Muley, T., van, Z.N., Smit, E.F., Beebe, K., Neckers, L., Ylstra, B., and Giaccone, G. (2008) Integration of gene dosage and gene expression in non-small cell lung cancer, identification of HSP90 as potential target. PLoS ONE, 3, e0001722.PubMedGoogle Scholar
  37. Goel, V.K., Lazar, A.J., Warneke, C.L., Redston, M.S., and Haluska, F.G. (2006) Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Invest Dermatol, 126, 154–160.PubMedGoogle Scholar
  38. Goetz, M.P., Toft, D., Reid, J., Ames, M., Stensgard, B., Safgren, S., Adjei, A.A., Sloan, J., Atherton, P., Vasile, V., Salazaar, S., Adjei, A., Croghan, G., and Erlichman, C. (2005) Phase i trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol, 23, 1078–1087.PubMedGoogle Scholar
  39. Grammatikakis, N., Vultur, A., Ramana, C.V., Siganou, A., Schweinfest, C.W., Watson, D.K., and Raptis, L. (2002) The role of hsp90n, a new member of the hsp90 family, in signal transduction and neoplastic transformation. J Biol Chem, 277, 8312–8320.PubMedGoogle Scholar
  40. Gray, P.J. Jr., Stevenson, M.A., and Calderwood, S.K. (2007) Targeting cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells. Cancer Res, 67, 11942–11950.PubMedGoogle Scholar
  41. Grbovic, O.M., Basso, A.D., Sawai, A., Ye, Q., Friedlander, P., Solit, D., and Rosen, N. (2006) V600E B-raf requires the hsp90 chaperone for stability and is degraded in response to hsp90 inhibitors. Proc Natl Acad Sci U S A, 103, 57–62.PubMedGoogle Scholar
  42. Grem, J.L., Morrison, G., Guo, X.D., Agnew, E., Takimoto, C.H., Thomas, R., Szabo, E., Grochow, L., Grollman, F., Hamilton, J.M., Neckers, L., and Wilson, R.H. (2005) Phase i and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors. J Clin Oncol, 23, 1885–1893.PubMedGoogle Scholar
  43. Gress, T.M., Muller-Pillasch, F., Weber, C., Lerch, M.M., Friess, H., Buchler, M., Beger, H.G., and Adler, G. (1994) Differential expression of heat shock proteins in pancreatic carcinoma. Cancer Res, 54, 547–551.PubMedGoogle Scholar
  44. Guo, F., Rocha, K., Bali, P., Pranpat, M., Fiskus, W., Boyapalle, S., Kumaraswamy, S., Balasis, M., Greedy, B., Armitage, E.S., Lawrence, N., and Bhalla, K. (2005) Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res, 65, 10536–10544.PubMedGoogle Scholar
  45. Gyurkocza, B., Plescia, J., Raskett, C.M., Garlick, D.S., Lowry, P.A., Carter, B.Z., Andreeff, M., Meli, M., Colombo, G., and Altieri, D.C. (2006) Antileukemic activity of shepherdin and molecular diversity of hsp90 inhibitors. J Natl Cancer Inst, 98, 1068–1077.PubMedGoogle Scholar
  46. Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100, 57–70.PubMedGoogle Scholar
  47. Hardcastle, A., Tomlin, P., Norris, C., Richards, J., Cordwell, M., Boxall, K., Rowlands, M., Jones, K., Collins, I., McDonald, E., Workman, P., and Aherne, W. (2007) A duplexed phenotypic screen for the simultaneous detection of inhibitors of the molecular chaperone heat shock protein 90 and modulators of cellular acetylation. Mol Cancer Ther, 6, 1112–1122.PubMedGoogle Scholar
  48. He, H., Zatorska, D., Kim, J., Aguirre, J., Llauger, L., She, Y., Wu, N., Immormino, R.M., Gewirth, D.T., and Chiosis, G. (2006) Identification of potent water soluble purine-scaffold inhibitors of the heat shock protein 90. J Med Chem, 49, 381–390.PubMedGoogle Scholar
  49. Hieronymus, H., Lamb, J., Ross, K.N., Peng, X.P., Clement, C., Rodina, A., Nieto, M., Du, J., Stegmaier, K., Raj, S.M., Maloney, K.N., Clardy, J., Hahn, W.C., Chiosis, G., and Golub, T.R. (2006) Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell, 10, 321–330.PubMedGoogle Scholar
  50. Holmes, J.L., Sharp, S.Y., Hobbs, S., and Workman, P. (2008) Silencing of HSP90 cochaperone AHA1 expression decreases client protein activation and increases cellular sensitivity to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res, 68, 1188–1197.PubMedGoogle Scholar
  51. Hostein, I., Robertson, D., DiStefano, F., Workman, P., and Clarke, P.A. (2001) Inhibition of signal transduction by the hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res, 61, 4003–4009.PubMedGoogle Scholar
  52. Huang, Y., Zhou, Y., Fan, Y., and Zhou, D. (2008) Celastrol inhibits the growth of human glioma xenografts in nude mice through suppressing VEGFR expression. Cancer Lett, 264(1), 101–6.PubMedGoogle Scholar
  53. Jameel, A., Skilton, R.A., Campbell, T.A., Chander, S.K., Coombes, R.C., and Luqmani, Y.A. (1992) Clinical and biological significance of HSP89 alpha in human breast cancer. Int J Cancer, 50, 409–415.PubMedGoogle Scholar
  54. Janin, Y.L. (2005) Heat shock protein 90 inhibitors. A text book example of medicinal chemistry? J Med Chem, 48, 7503–7512.PubMedGoogle Scholar
  55. Jensen, M.R., Schoepfer, J., Radimerski, T., Massey, A., Guy, C.T., Brueggen, J., Quadt, C., Buckler, A., Cozens, R., Drysdale, M.J., Garcia-Echeverria, C., and Chene, P. (2008) NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res, 10, R33.PubMedGoogle Scholar
  56. Kamal, A., Thao, L., Sensintaffar, J., Zhang, L., Boehm, M.F., Fritz, L.C., and Burrows, F.J. (2003) A high-affinity conformation of hsp90 confers tumour selectivity on hsp90 inhibitors. Nature, 425, 407–410.PubMedGoogle Scholar
  57. Kang, B.H., Plescia, J., Dohi, T., Rosa, J., Doxsey, S.J., and Altieri, D.C. (2007) Regulation of tumor cell mitochondrial homeostasis by an organelle-specific hsp90 chaperone network. Cell, 131, 257–270.PubMedGoogle Scholar
  58. Kasibhatla, S.R., Hong, K., Biamonte, M.A., Busch, D.J., Karjian, P.L., Sensintaffar, J.L., Kamal, A., Lough, R.E., Brekken, J., Lundgren, K., Grecko, R., Timony, G.A., Ran, Y., Mansfield, R., Fritz, L.C., Ulm, E., Burrows, F.J., and Boehm, M.F. (2007) Rationally designed high-affinity 2-amino-6-halopurine heat shock protein 90 inhibitors that exhibit potent antitumor activity. J Med Chem, 50, 2767–2778.PubMedGoogle Scholar
  59. Kelland, L.R., Sharp, S.Y., Rogers, P.M., Myers, T.G., and Workman, P. (1999) DT-diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J Natl Cancer Inst, 91, 1940–1949.PubMedGoogle Scholar
  60. Kovacs, J.J., Murphy, P.J., Gaillard, S., Zhao, X., Wu, J.T., Nicchitta, C.V., Yoshida, M., Toft, D.O., Pratt, W.B., and Yao, T.P. (2005) HDAC6 regulates hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell, 18, 601–607.PubMedGoogle Scholar
  61. Kubota, H., Suzuki, T., Lu, J., Takahashi, S., Sugita, K., Sekiya, S., and Suzuki, N. (2005) Increased expression of GRP94 protein is associated with decreased sensitivity to X-rays in cervical cancer cell lines. Int J Radiat Biol, 81, 701–709.PubMedGoogle Scholar
  62. Lavictoire, S.J., Parolin, D.A., Klimowicz, A.C., Kelly, J.F., and Lorimer, I.A. (2003) Interaction of hsp90 with the nascent form of the mutant epidermal growth factor receptor EGFRvIII. J Biol Chem, 278, 5292–5299.PubMedGoogle Scholar
  63. Leskovar, A., Wegele, H., Werbeck, N.D., Buchner, J., (2008) The ATPase cycle of the mitochondrial hsp90 analog trap1. J Biol Chem, 283, 11677–11688.PubMedGoogle Scholar
  64. Majumder, P.K. and Sellers, W.R. (2005) Akt-regulated pathways in prostate cancer. Oncogene, 24, 7465–7474.PubMedGoogle Scholar
  65. Maloney, A., Clarke, P.A., Naaby-Hansen, S., Stein, R., Koopmann, J.O., Akpan, A., Yang, A., Zvelebil, M., Cramer, R., Stimson, L., Aherne, W., Banerji, U., Judson, I., Sharp, S., Powers, M., deBilly, E., Salmons, J., Walton, M., Burlingame, A., Waterfield, M., and Workman, P. (2007) Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res, 67, 3239–3253.PubMedGoogle Scholar
  66. Marcu, M.G., Chadli, A., Bouhouche, I., Catelli, M., and Neckers, L.M. (2000a) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem, 275, 37181–37186.Google Scholar
  67. Marcu, M.G., Schulte, T.W., and Neckers, L. (2000b) Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst, 92, 242–248.Google Scholar
  68. Martin, C.J., Gaisser, S., Challis, I.R., Carletti, I., Wilkinson, B., Gregory, M., Prodromou, C., Roe, S.M., Pearl, L.H., Boyd, S.M., and Zhang, M.Q. (2008) Molecular characterization of macbecin as an hsp90 inhibitor. J Med Chem, 51(9), 2853–7.PubMedGoogle Scholar
  69. Masuda, Y., Shima, G., Aiuchi, T., Horie, M., Hori, K., Nakajo, S., Kajimoto, S., Shibayama-Imazu, T., and Nakaya, K. (2004) Involvement of tumor necrosis factor receptor-associated protein 1(TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J Biol Chem, 279, 42503–42515.PubMedGoogle Scholar
  70. Meli, M., Pennati, M., Curto, M., Daidone, M.G., Plescia, J., Toba, S., Altieri, D.C., Zaffaroni, N., and Colombo, G. (2006) Small-molecule targeting of heat shock protein 90 chaperone function: Rational identification of a new anticancer lead. J Med Chem, 49, 7721–7730.PubMedGoogle Scholar
  71. Melnick, J., Aviel, S., and Argon, Y. (1992) The endoplasmic reticulum stress protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains. J Biol Chem, 267, 21303–21306.PubMedGoogle Scholar
  72. Melnick, J., Dul, J.L., and Argon, Y. (1994) Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature, 370, 373–375.PubMedGoogle Scholar
  73. Millson, S.H., Truman, A.W., Racz, A., Hu, B., Panaretou, B., Nuttall, J., Mollapour, M., Soti, C., and Piper, P.W. (2007) Expressed as the sole hsp90 of yeast, the alpha and beta isoforms of human hsp90 differ with regard to their capacities for activation of certain client proteins, whereas only hsp90beta generates sensitivity to the hsp90 inhibitor radicicol. Febs J, 274, 4453–4463.PubMedGoogle Scholar
  74. Mimnaugh, E.G., Xu, W., Vos, M., Yuan, X., Isaacs, J.S., Bisht, K.S., Gius, D., and Neckers, L. (2004) Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther, 3, 551–566.PubMedGoogle Scholar
  75. Miyata, Y. and Nishida, E. (2005) CK2 binds, phosphorylates, and regulates its pivotal substrate cdc37, an hsp90-cochaperone. Mol Cell Biochem, 274, 171–179.PubMedGoogle Scholar
  76. Modi, S., Stopeck, A.T., Gordon, M.S., Mendelson, D., Solit, D.B., Bagatell, R., Ma, W., Wheler, J., Rosen, N., Norton, L., Cropp, G.F., Johnson, R.G., Hannah, A.L., and Hudis, C.A. (2007) Combination of trastuzumab and tanespimycin(17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase i dose-escalation study. J Clin Oncol, 25, 5410–5417.PubMedGoogle Scholar
  77. Mosser, D.D. and Morimoto, R.I. (2004) Molecular chaperones and the stress of oncogenesis. Oncogene, 23, 2907–2918.PubMedGoogle Scholar
  78. Munster, P.N., Basso, A., Solit, D., Norton, L., and Rosen, N. (2001) Modulation of hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. See: E. A. Sausville, combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters. Clin Cancer Res, 7, 2155–2158, 2228–2236.Google Scholar
  79. Neckers, L., Kern, A., and Tsutsumi, S. (2007) Hsp90 inhibitors disrupt mitochondrial homeostasis in cancer cells. Chem Biol, 14, 1204–1206.PubMedGoogle Scholar
  80. Pacey, S., Banerji, U., Judson, I., and Workman, P. (2006) Hsp90 inhibitors in the clinic. Handb Exp Pharmacol, 172, 331–358.PubMedGoogle Scholar
  81. Panaretou, B., Siligardi, G., Meyer, P., Maloney, A., Sullivan, J.K., Singh, S., Millson, S.H., Clarke, P.A., Naaby-Hansen, S., Stein, R., Cramer, R., Mollapour, M., Workman, P., Piper, P.W., Pearl, L.H., and Prodromou, C. (2002) Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol Cell, 10, 1307–1318.PubMedGoogle Scholar
  82. Pearl, L.H. (2005) Hsp90 and cdc37 – a chaperone cancer conspiracy. Curr Opin Genet Dev, 15, 55–61.PubMedGoogle Scholar
  83. Pearl, L.H., Prodromou, C., and Workman, P. (2008) The hsp90 molecular chaperone: An open and shut case for treatment. Biochem J, 410, 439–453.PubMedGoogle Scholar
  84. Pick, E., Kluger, Y., Giltnane, J.M., Moeder, C., Camp, R.L., Rimm, D.L., and Kluger, H.M. (2007) High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res, 67, 2932–2937.PubMedGoogle Scholar
  85. Plescia, J., Salz, W., Xia, F., Pennati, M., Zaffaroni, N., Daidone, M.G., Meli, M., Dohi, T., Fortugno, P., Nefedova, Y., Gabrilovich, D.I., Colombo, G., and Altieri, D.C. (2005) Rational design of shepherdin, a novel anticancer agent. Cancer Cell, 7, 457–468.PubMedGoogle Scholar
  86. Powers, M.V. and Workman, P. (2006) Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr Relat Cancer, 13(suppl. 1), S125–S135.PubMedGoogle Scholar
  87. Powers, M.V. and Workman, P. (2007) Inhibitors of the heat shock response: Biology and pharmacology. FEBS Lett, 581, 3758–3769.PubMedGoogle Scholar
  88. Pridgeon, J.W., Olzmann, J.A., Chin, L.S., and Li, L. (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol, 5, e172.PubMedGoogle Scholar
  89. Prodromou, C., Panaretou, B., Chohan, S., Siligardi, G., O’Brien, R., Ladbury, J.E., Roe, S.M., Piper, P.W., and Pearl, L.H. (2000) The ATPase cycle of hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. Embo J, 19, 4383–4392.PubMedGoogle Scholar
  90. Prodromou, C., Roe, S.M., O’Brien, R., Ladbury, J.E., Piper, P.W., and Pearl, L.H. (1997) Identification and structural characterization of the ATP/ADP-binding site in the hsp90 molecular chaperone. Cell, 90, 65–75.PubMedGoogle Scholar
  91. Radujkovic, A., Schad, M., Topaly, J., Veldwijk, M.R., Laufs, S., Schultheis, B.S., Jauch, A., Melo, J.V., Fruehauf, S., and Zeller, W.J. (2005) Synergistic activity of imatinib and 17-AAG in imatinib-resistant CML cells overexpressing BCR-ABL – inhibition of P-glycoprotein function by 17-AAG. Leukemia, 19, 1198–1206.PubMedGoogle Scholar
  92. Rakitina, T.V., Vasilevskaya, I.A., and O’Dwyer, P.J. (2003) Additive interaction of oxaliplatin and 17-allylamino-17-demethoxygeldanamycin in colon cancer cell lines results from inhibition of nuclear factor kappaB signaling. Cancer Res, 63, 8600–8605.PubMedGoogle Scholar
  93. Reddy, R.K., Lu, J., and Lee, A.S. (1999) The endoplasmic reticulum chaperone glycoprotein GRP94 with ca(2+)-binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. J Biol Chem, 274, 28476–28483.PubMedGoogle Scholar
  94. Reifenberger, J., Knobbe, C.B., Sterzinger, A.A., Blaschke, B., Schulte, K.W., Ruzicka, T., and Reifenberger, G. (2004) Frequent alterations of ras signaling pathway genes in sporadic malignant melanomas. Int J Cancer, 109, 377–384.PubMedGoogle Scholar
  95. Riggs, D., Cox, M., Cheung-Flynn, J., Prapapanich, V., Carrigan, P., and Smith, D. (2004) Functional specificity of co-chaperone interactions with hsp90 client proteins. Crit Rev Biochem Mol Biol, 39, 279–295.PubMedGoogle Scholar
  96. Roe, S.M., Ali, M.M., Meyer, P., Vaughan, C.K., Panaretou, B., Piper, P.W., Prodromou, C., and Pearl, L.H. (2004) The mechanism of hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell, 116, 87–98.PubMedGoogle Scholar
  97. Roe, S.M., Prodromou, C., O’Brien, R., Ladbury, J.E., Piper, P.W., and Pearl, L.H. (1999) Structural basis for inhibition of the hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem, 42, 260–266.PubMedGoogle Scholar
  98. Sain, N., Krishnan, B., Ormerod, M.G., De, R.A., Liu, W.M., Kaye, S.B., Workman, P., and Jackman, A.L. (2006) Potentiation of paclitaxel activity by the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin in human ovarian carcinoma cell lines with high levels of activated AKT. Mol Cancer Ther, 5, 1197–1208.PubMedGoogle Scholar
  99. Sawai, A., Chandarlapaty, S., Greulich, H., Gonen, M., Ye, Q., Arteaga, C.L., Sellers, W., Rosen, N., and Solit, D.B. (2008) Inhibition of hsp90 down-regulates mutant epidermal growth factor receptor(EGFR) expression and sensitizes EGFR mutant tumors to paclitaxel. Cancer Res, 68, 589–596.PubMedGoogle Scholar
  100. Schulte, T.W., Akinaga, S., Soga, S., Sullivan, W., Stensgard, B., Toft, D., and Neckers, L.M. (1998) Antibiotic radicicol binds to the N-terminal domain of hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones, 3, 100–108.PubMedGoogle Scholar
  101. Scroggins, B.T., Robzyk, K., Wang, D., Marcu, M.G., Tsutsumi, S., Beebe, K., Cotter, R.J., Felts, S., Toft, D., Karnitz, L., Rosen, N., and Neckers, L. (2007) An acetylation site in the middle domain of hsp90 regulates chaperone function. Mol Cell, 25, 151–159.PubMedGoogle Scholar
  102. Sharp, S.Y., Boxall, K., Rowlands, M., Prodromou, C., Roe, S.M., Maloney, A., Powers, M., Clarke, P.A., Box, G., Sanderson, S., Patterson, L., Matthews, T.P., Cheung, K.M., Ball, K., Hayes, A., Raynaud, F., Marais, R., Pearl, L., Eccles, S., Aherne, W., McDonald, E., and Workman, P. (2007a) In vitro biological characterization of a novel, synthetic diaryl pyrazole resorcinol class of heat shock protein 90 inhibitors. Cancer Res, 67, 2206–2216.Google Scholar
  103. Sharp, S.Y., Prodromou, C., Boxall, K., Powers, M.V., Holmes, J.L., Box, G., Matthews, T.P., Cheung, K.M., Kalusa, A., James, K., Hayes, A., Hardcastle, A., Dymock, B., Brough, P.A., Barril, X., Cansfield, J.E., Wright, L., Surgenor, A., Foloppe, N., Hubbard, R.E., Aherne, W., Pearl, L., Jones, K., McDonald, E., Raynaud, F., Eccles, S., Drysdale, M., and Workman, P. (2007b) Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues. Mol Cancer Ther, 6, 1198–1211.Google Scholar
  104. Shi, Y., Mosser, D.D., and Morimoto, R.I. (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev, 12, 654–666.PubMedGoogle Scholar
  105. Shiau, A.K., Harris, S.F., Southworth, D.R., and Agard, D.A. (2006) Structural analysis of E. Coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell, 127, 329–340.PubMedGoogle Scholar
  106. Smith, D.F., Whitesell, L., Nair, S.C., Chen, S., Prapapanich, V., and Rimerman, R.A. (1995) Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol, 15, 6804–6812.PubMedGoogle Scholar
  107. Smith, N.F., Hayes, A., James, K., Nutley, B.P., McDonald, E., Henley, A., Dymock, B., Drysdale, M.J., Raynaud, F.I., and Workman, P. (2006) Preclinical pharmacokinetics and metabolism of a novel diaryl pyrazole resorcinol series of heat shock protein 90 inhibitors. Mol Cancer Ther, 5, 1628–1637.PubMedGoogle Scholar
  108. Soga, S., Neckers, L.M., Schulte, T.W., Shiotsu, Y., Akasaka, K., Narumi, H., Agatsuma, T., Ikuina, Y., Murakata, C., Tamaoki, T., and Akinaga, S. (1999) KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of hsp90 binding signaling molecules. Cancer Res, 59, 2931–2938.PubMedGoogle Scholar
  109. Soga, S., Sharma, S.V., Shiotsu, Y., Shimizu, M., Tahara, H., Yamaguchi, K., Ikuina, Y., Murakata, C., Tamaoki, T., Kurebayashi, J., Schulte, T.W., Neckers, L.M., and Akinaga, S. (2001) Stereospecific antitumor activity of radicicol oxime derivatives. Cancer Chemother Pharmacol, 48, 435–445.PubMedGoogle Scholar
  110. Solit, D.B., Egorin, M., Valentin, G., Delacruz, A., Ye, Q., Schwartz, L., Larson, S., Rosen, N., and Scher, H.I (2004) Phase 1 pharmacokinetic and pharmacodynamic trial of docetaxel and 17-AAG(17-allylamino-17-demethoxygeldanamcyin) [abstract 3032]. Proc Am Soc Clin Oncol, 23, 203.Google Scholar
  111. Solit, D.B. and Rosen, N. (2006) Hsp90: a novel target for cancer therapy. Curr Top Med Chem, 6, 1205–1214.PubMedGoogle Scholar
  112. Solit, D.B., Zheng, F.F., Drobnjak, M., Munster, P.N., Higgins, B., Verbel, D., Heller, G., Tong, W., Cordon-Cardo, C., Agus, D.B., Scher, H.I., and Rosen, N. (2002) 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin. Cancer Res, 8, 986–993.PubMedGoogle Scholar
  113. Sreedhar, A.S., Kalmar, E., Csermely, P., and Shen, Y.F. (2004a) Hsp90 isoforms: Functions, expression and clinical importance. FEBS Lett, 562, 11–15.Google Scholar
  114. Sreedhar, A.S., Soti, C., and Csermely, P. (2004b) Inhibition of hsp90: a new strategy for inhibiting protein kinases. Biochim Biophys Acta, 1697, 233–242.Google Scholar
  115. Stebbins, C.E., Russo, A.A., Schneider, C., Rosen, N., Hartl, F.U., and Pavletich, N.P. (1997) Crystal structure of an hsp90-geldanamycin complex: Targeting of a protein chaperone by an antitumor agent. Cell, 89, 239–250.PubMedGoogle Scholar
  116. Supko, J.G., Hickman, R.L., Grever, M.R., and Malspeis, L. (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol, 36, 305–315.PubMedGoogle Scholar
  117. Suto, R. and Srivastava, P.K. (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science, 269, 1585–1588.PubMedGoogle Scholar
  118. Sydor, J.R., Normant, E., Pien, C.S., Porter, J.R., Ge, J., Grenier, L., Pak, R.H., Ali, J.A., Dembski, M.S., Hudak, J., Patterson, J., Penders, C., Pink, M., Read, M.A., Sang, J., Woodward, C., Zhang, Y., Grayzel, D.S., Wright, J., Barrett, J.A., Palombella, V.J., Adams, J., and Tong, J.K. (2006) Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride(IPI-504), an anti-cancer agent directed against hsp90. Proc Natl Acad Sci U S A, 103, 17408–17413.PubMedGoogle Scholar
  119. Vasilevskaya, I.A., Rakitina, T.V., and O’Dwyer, P.J. (2003) Geldanamycin and its 17-allylamino-17-demethoxy analogue antagonize the action of cisplatin in human colon adenocarcinoma cells: Differential caspase activation as a basis for interaction. Cancer Res, 63, 3241–3246.PubMedGoogle Scholar
  120. Vasilevskaya, I.A., Rakitina, T.V., and O’Dwyer, P.J. (2004) Quantitative effects on c-Jun N-terminal protein kinase signaling determine synergistic interaction of cisplatin and 17-allylamino-17-demethoxygeldanamycin in colon cancer cell lines. Mol Pharmacol, 65, 235–243.PubMedGoogle Scholar
  121. Wanderling, S., Simen, B.B., Ostrovsky, O., Ahmed, N.T., Vogen, S.M., Gidalevitz, T., and Argon, Y. (2007) GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion. Mol Biol Cell, 18, 3764–3775.PubMedGoogle Scholar
  122. Wandinger, S.K., Suhre, M.H., Wegele, H., and Buchner, J. (2006) The phosphatase ppt1 is a dedicated regulator of the molecular chaperone hsp90. Embo J, 25, 367–376.PubMedGoogle Scholar
  123. Wegele, H., Muller, L., and Buchner, J. (2004) Hsp70 and hsp90 – a relay team for protein folding. Rev Physiol Biochem Pharmacol, 151, 1–44.PubMedGoogle Scholar
  124. Wright, L., Barril, X., Dymock, B., Sheridan, L., Surgenor, A., Beswick, M., Drysdale, M., Collier, A., Massey, A., Davies, N., Fink, A., Fromont, C., Aherne, W., Boxall, K., Sharp, S., Workman, P., and Hubbard, R.E. (2004) Structure-activity relationships in purine-based inhibitor binding to HSP90 isoforms. Chem Biol, 11, 775–785.PubMedGoogle Scholar
  125. Xu, W., Soga, S., Beebe, K., Lee, M.J., Kim, Y.S., Trepel, J., and Neckers, L. (2007) Sensitivity of epidermal growth factor receptor and ErbB2 exon 20 insertion mutants to hsp90 inhibition. Br J Cancer, 97, 741–744.PubMedGoogle Scholar
  126. Yang, H., Chen, D., Cui, Q.C., Yuan, X., and Dou, Q.P. (2006) Celastrol, a triterpene extracted from the chinese “thunder of god vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res, 66, 4758–4765.PubMedGoogle Scholar
  127. Young, J.C., Agashe, V.R., Siegers, K., and Hartl, F.U. (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol, 5, 781–791.PubMedGoogle Scholar
  128. Zhang, T., Hamza, A., Cao, X., Wang, B., Yu, S., Zhan, C.G., and Sun, D. (2008) A novel hsp90 inhibitor to disrupt hsp90/cdc37 complex against pancreatic cancer cells. Mol Cancer Ther, 7, 162–170.PubMedGoogle Scholar
  129. Zhao, Y.G., Gilmore, R., Leone, G., Coffey, M.C., Weber, B., and Lee, P.W. (2001) Hsp90 phosphorylation is linked to its chaperoning function. Assembly of the reovirus cell attachment protein. J Biol Chem, 276, 32822–32827.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Marissa V. Powers
  • Paul Workman
    • 1
  1. 1.Signal Transduction and Molecular Pharmacology team, Cancer Research UK Centre for Cancer Therapeutics, Haddow LaboratoriesThe Institute of Cancer Research SuttonSurreyUK

Personalised recommendations