Mesoporous Thin Films: Properties and Applications

  • Plinio Innocenzi
  • Stefano Costacurta
  • Tongjit Kidchob
  • Luca Malfatti
  • Paolo Falcaro
  • Galo Soler-Illia
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


Mesoporous films are a fine example of a self-assembled nanosystem, containing ordered porosity in the 2–50 nm range. A great number of characteristics, including framework nature (composition, crystallinity), high surface area, pore dimension, shape, surface, accessibility and pore array symmetry and interconnection can be tuned using green chemistry synthetic techniques. These materials present potentials in several fields where a large functional interfacial area contained in a robust framework is required. The capability of changing in a separate way the characteristics of the inorganic framework and the pore surface leads to an amazing potential in tuning functional properties, due to the combined properties of a thoroughly tailored pore system and the inherent features of thin films. These properties can be tailored to respond to changes in the environment, such as relative humidity, making mesoporous hybrid thin films an exciting prospect for several nanotechnology applications (e.g. sensors, actuators, separation devices). Here we present some basic concepts revolving around mesoporous films. We will first comment on the synthetic approach in the fabrication of these materials. Second, we will discuss the aspects regarding template organization and surface functionalization. Third, we will review some applications illustrating the potentialities of theses self-assembled nanomaterials.


Mesoporous thin-films self-assembly sol-gel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. J. Brinker and G. W. Scherer, Sol-gel science (Academic, San Diego, CA, 1992).Google Scholar
  2. 2.
    Handbook of sol-gel science and technology, edited by S. Sakka ( Kluwer AP, Dordrecht, 2004).Google Scholar
  3. 3.
    G. A. Ozin and A. C. Arsenault, Nanochemistry: a chemical approach to nanomaterials (The Royal Society of Chemistry, Cambridge, 1995).Google Scholar
  4. 4.
    D. Kuang, T. Brezesinski, and B. Smarsly, J. Am. Chem. Soc. 126, 10534 (2004).CrossRefGoogle Scholar
  5. 5.
    J. Roquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, and K. K. Unger, Pure and Appl. Chem. 66, 1739 (1994).CrossRefGoogle Scholar
  6. 6.
    M. Antonietti and G. A. Ozin. Chem. Eur. J. 10, 28 (2004)CrossRefGoogle Scholar
  7. 7.
    G. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, J. Chem Rev. 102, 4093 (2002).CrossRefGoogle Scholar
  8. 8.
    G. Soler-Illia, E. L. Crepaldi, D. Grosso, and C. Sanchez, Curr. Opin. Colloid Interf. Sci. 8, 109 (2003).CrossRefGoogle Scholar
  9. 9.
    C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Adv. Mater. 11, 579 (1999).CrossRefGoogle Scholar
  10. 10.
    C. J. Brinker, MRS Bull. 29(9), 631 (2004).Google Scholar
  11. 11.
    C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature 359, 710 (1992).CrossRefGoogle Scholar
  12. 12.
    J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, J. Am Chem. Soc. 114, 10834 (1992).CrossRefGoogle Scholar
  13. 13.
    G. Soler-Illia and P. Innocenzi, Chem. Eur. J. 12, 4478 (2006).CrossRefGoogle Scholar
  14. 14.
    L. Nicole, C. Boissiere, D. Grosso, A. Quach, and C. Sanchez, J. Mater. Chem. 15, 3598 (2005).CrossRefGoogle Scholar
  15. 15.
    S. Besson, T. Gacoin, C. Ricolleau, C. Jacquiod, and J. P. Boilot, Nano Lett. 2, 409  (2002).CrossRefGoogle Scholar
  16. 16.
    M. D. Pérez, E. Otal, S. Aldabe-Bilmes, G. Soler-Illia, E. L. Crepaldi, D. Grosso, and C. Sanchez, Langmuir 20, 6879 (2004).CrossRefGoogle Scholar
  17. 17.
    P. C. Angelomé and G. Soler Illia, Chem. Mater. 17, 322 (2005).CrossRefGoogle Scholar
  18. 18.
    D. Grosso, F. Babonneau, P.-A. Albouy, H. Amenitsch, A. R. Balkenende, A. Brunet- Bruneau, and J. Rivory. Chem. Mater. 14, 931 (2002).CrossRefGoogle Scholar
  19. 19.
    M. Klotz, A. Ayral, C. Guizard, L. Cot, J. Mater. Chem. 10, 663 (2000).CrossRefGoogle Scholar
  20. 20.
    G. Soler-Illia, E. Scolan, A. Louis, P. -A. Albouy, and C. Sanchez, New J. Chem. 25 156 (2001).CrossRefGoogle Scholar
  21. 21.
    E. L. Crepaldi, G. Soler-Illia, D. Grosso, F. Ribot, F. Cagnol and C. Sanchez, J. Am. Chem. Soc. 125, 9770 (2003).CrossRefGoogle Scholar
  22. 22.
    D. M. Antonelli, Microp. Mesop. Mater. 30, 315 (1999).CrossRefGoogle Scholar
  23. 23.
    J. N. Israelachvili, Intermolecular and surface forces (Academic, London, 1998).Google Scholar
  24. 24.
    (a) M. Ogawa and N. Masukawa, Microp. Mesop. Mater. 38, 35 (2000). (b) D. A. Doshi, A. Gibaud, V. Goletto, M. C. Lu, H. Gerung, B. Ocko, S. M. Han, and C. J. Brinker, J. Am. Chem. Soc. 125, 11646 (2003).Google Scholar
  25. 25.
    Y. F. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. L. Gong, Y. X. Guo, H. Soyez, B. Dunn, M. H. Huang, and J. I. Zink, Nature 389, 364 (1997).CrossRefGoogle Scholar
  26. 26.
    P. Falcaro, D. Grosso, H. Amenitsch, and P. Innocenzi, J. Phys. Chem. B 108, 10942 (2004).CrossRefGoogle Scholar
  27. 27.
    R. C. Hayward, P. C. A. Alberius, E. J. Kramer, and B. F. Chmelka, Langmuir 20, 5998 (2004).CrossRefGoogle Scholar
  28. 28.
    P. Falcaro, S. Costacurta, G. Mattei, H. Amenitsch, A. Marcelli, M. Cestelli Guidi, M. Piccinini, A. Nucara, L. Malfatti, T. Kidchob, and P. Innocenzi, J. Am. Chem. Soc. 127, 3838 (2005).CrossRefGoogle Scholar
  29. 29.
    P. Innocenzi, L. Malfatti, T. Kidchob, P. Falcaro, S. Costacurta, M. Guglielmi, G. Mattei, V. Bello, and H. Amenitsch, J. Sync. Rad. 12, 734 (2005).CrossRefGoogle Scholar
  30. 30.
    F. Cagnol, D. Grosso, G. Soler-Illia, E. L. Crepaldi, F. Babonneau, H. Amenitsch, and C. Sanchez, J. Mater. Chem. 13, 61 (2003).CrossRefGoogle Scholar
  31. 31.
    L. Malfatti, T. Kidchob, S. Costacurta, P. Falcaro, P. Schiavuta, H. Amenitsch, and P. Innocenzi, Chem. Mater. 18, 4553 (2006).CrossRefGoogle Scholar
  32. 32.
    D. Grosso, G. Soler-Illia, E. L. Crepaldi, F. Cagnol, C. Sinturel, A. Bourgeios, A. Brunet-Bruneau, H. Amenitsch, P. -A. Albouy, and C. Sanchez, Chem. Mater. 15, 4562 (2003).CrossRefGoogle Scholar
  33. 33.
    T. Brezesinski, B. Smarsly, K. Iimura, D. Grosso, C. Boissière, H. Amenitsch, M. Antonietti, and C. Sanchez, Small 1, 889 (2005).CrossRefGoogle Scholar
  34. 34.
    D. Grosso, C. Boissière, B. Smarsly, T. Brezesinski, N. Pinna, P.-A. Albouy, H. Amenitsch, M. Antonietti, and C. Sanchez, Nature Mater. 3, 787 (2004).CrossRefGoogle Scholar
  35. 35.
    N. Hedin, R. Graf, S. C. Christiansen, C. Gervais, R. C. Hayward, J. Eckert, and B. F. Chmelka, J. Am. Chem. Soc. 126, 9425 (2004).CrossRefGoogle Scholar
  36. 36.
    H. Y. Fan, C. Hartshorn, T. Buchheit, D. Tallant, R. Assink, R. Simpson, D. J. Kisse, D. J. Lacks, S. Torquato, and C. J. Brinker, Nature Mater. 6, 418 (2007).CrossRefGoogle Scholar
  37. 37.
    S. Inagaki, S. Guan, T. Ohsuna, and O. Terasaki, Nature 416, 304 (2002).CrossRefGoogle Scholar
  38. 38.
    M. Klotz, P. A. Albouy, A. Ayral, C. Menager, D. Grosso, A. Vander Lee, V. Cabuil, F. Babonneau, and C. Guizard, Chem. Mater. 12, 1721 (2000).CrossRefGoogle Scholar
  39. 39.
    H. Miyata, T. Suzuki, A. Fukuoka, T. Sawada, M. Watanabe, T. Noma, K. Takada, T. Mukaide, and K. Kuroda, Nature Mater. 3, 651 (2004).CrossRefGoogle Scholar
  40. 40.
    X. Wu, K. Yu, C. J. Brinker, and J. C. Ripmeester, Langmuir 19, 7289 (2003).CrossRefGoogle Scholar
  41. 41.
    P. Falcaro, S. Costacurta, G. Mattei, H. Amenitsch, A. Marcelli, M. Cestelli Guidi, M. Piccinini, A. Nucara, L. Malfatti, T. Kidchob, Tongjit, and P. Innocenzi, J. Am. Chem. Soc. 127, 3838 (2005).CrossRefGoogle Scholar
  42. 42.
    P. Innocenzi, P. Falcaro, D. Grosso, and F. Babonneau, J. Phys. Chem. B 107, 4711 (2003).CrossRefGoogle Scholar
  43. 43.
    L. Nicole, C. Boissière, D. Grosso, P. Hesemann, J. Moreau, and C. Sanchez, Chem. Commun. 2312 (2002).Google Scholar
  44. 44.
    (a) N. Liu, R. A. Assink, B. Smarsly, and C. J. Brinker, Chem. Commun. 1143 (2003). (b) N. Liu, R. A. Assink, and C. J. Brinker, Chem. Commun. 370 (2003).Google Scholar
  45. 45.
    A. Bearzotti, J. Mio Bertolo, P. Innocenzi, P. Falcaro, and E. Traversa, Sens. Act. B: Chem. 95, 107 (2003).CrossRefGoogle Scholar
  46. 46.
    B. O’Regan and M. Grätzel, Nature 353, 737 (1991).CrossRefGoogle Scholar
  47. 47.
    M. Grätzel, Nature Mater. 421, 586 (2003).CrossRefGoogle Scholar
  48. 48.
    C. J. Barbè, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Ceram. Soc. 80, 3157 (1997).Google Scholar
  49. 49.
    S. Burnside, V. Shklover, C. J. Barbe`, P. Comte, F. Arendse, K. Brooks, M. Grätzel, Chem. Mater. 10, 2419 (1998).CrossRefGoogle Scholar
  50. 50.
    E. Lancelle-Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, S. Lambert, F. Guillet, C. Boissiére, D. Grosso, C. Sanchez, Chem. Mater. 18, 6152 (2006).CrossRefGoogle Scholar
  51. 51.
    L. Malfatti, P. Falcaro, H. Amenitsch, S. Caramori, R. Argazzi, C. A. Bignozzi, S. Enzo, M. Maggini, P. Innocenzi, Microp. Mesop. Mater. 88, 304 (2006).CrossRefGoogle Scholar
  52. 52.
    C. J. Brinker and D. R. Dunphy, Curr. Opin. Coll. Inter. Sci. 11, 126 (2006).CrossRefGoogle Scholar
  53. 53.
    J. Y. Cheng, C. A. Ross, H. I. Smith, and E. L. Thomas. Adv. Mater. 18, 2505 (2006).CrossRefGoogle Scholar
  54. 54.
    H. Yang, N. Coombs, and G. A. Ozin, Adv. Mater. 9, 811 (1997).CrossRefGoogle Scholar
  55. 55.
    D. Grosso, F. Cagnol, G. Soler-Illia, E. L. Crepaldi, H. Amenitsch, A. Brunet-Bruneau, A. Bourgeois, and C. Sanchez, Adv. Funct. Mater. 14, 309 (2004).CrossRefGoogle Scholar
  56. 56.
    G. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, Chem. Rev. 102, 4093 (2002).CrossRefGoogle Scholar
  57. 57.
    B. J. Scott, G. Wirnsberger, M. D. McGehee, B. F. Chmelka, and G. D. Stucky, Adv. Mater. 13, 1231 (2001).CrossRefGoogle Scholar
  58. 58.
    D. A. Doshi, N. Huesing, M. Lu, H. Fan, Y. Lu, K. Simmons-Potter, B. G. Potter Jr., A. J. Hurd, and C. J. Brinker, Science 290, 107 (2000).CrossRefGoogle Scholar
  59. 59.
    H. Fan, Y. Lu, A. Stump, S. T. Reed, T. Baer, R. Schunk, V. Perez-Luna, G. P. Lopez, and C. J. Brinker, Nature 405, 56 (2000).CrossRefGoogle Scholar
  60. 60.
    Y. Lu, Y. Yang, A. Sellinger, M. Lu, J. Huang, H. Fan, R. Haddad, G. Lopez, A. R. Burns, D. Y. Sasaki, J. Shelnutt, and C. J. Brinker, Nature 410, 913 (2001).CrossRefGoogle Scholar
  61. 61.
    Y. Y. Lyu, J. H. Yim, Y. Byun, J. M. Kim, and J. K. Jeon, Thin Solid Films 496, 526 (2006).CrossRefGoogle Scholar
  62. 62.
    A. M. Dattelbaum, M. L. Amweg, L. E. Ecke, C. K. Yee, A. P. Shreve, and A. N. Parikh, Nano Lett. 3, 719 (2003).CrossRefGoogle Scholar
  63. 63.
    E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Munchmeyer, Microelectron. Eng. 4, 35 (1986).CrossRefGoogle Scholar
  64. 64.
    M. Schena, Microarray analysis (Wiley-Liss, New York, 2003).Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Plinio Innocenzi
    • 1
  • Stefano Costacurta
    • 1
  • Tongjit Kidchob
    • 1
  • Luca Malfatti
    • 1
  • Paolo Falcaro
    • 2
  • Galo Soler-Illia
    • 3
    • 4
  1. 1.Laboratorio di Scienza dei Materiali e NanotecnologieUniversità di Sas sari, Nanoworld Institute and CR-INSTM, Palazzo del Pou SalitAlgheroItaly
  2. 2.Associazione CIVEN – Nano Fabrication FacilityMarghera, VeneziaItaly
  3. 3.Gerencia de Quimica, CNEASan Martín, Buenos AiresArgentina
  4. 4.CONICETBuenos AiresArgentina

Personalised recommendations