Design of Inorganic and Inorganic-Organic Hybrid Materials by Sol-Gel Processing – From Nanostructures to Hierarchical Networks

  • Nicola Hüsing
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


The preparation of porous hierarchical architectures that have structural features spanning from the nanometer to micrometer and even larger dimensions which in addition exhibit defined functionalities is one of today’s challenges in materials chemistry. Sol-gel chemistry is a versatile tool for the formation of inorganic as well as inorganic-organic hybrid materials. Controlled hydrolysis and condensation reactions of (organo)alkoxysilanes allow the combination with organic entities and even their deliberate positioning in an inorganic network on the nanometer level. Moreover, not only the chemical composition, but also the structure of the final material is easily controlled on different length scales from the nanometer level up to the macroscopic morphology. In the present paper, opportunities from the application of novel diolmodified silanes are discussed for the synthesis of hierarchically organized inorganic, but also inorganic-organic porous monoliths. In addition, strategies for macroscopic shaping of hybrid materials with hierarchical porosity as well as exotemplating approaches are presented. In addition, strategies for macroscopic shaping of hybrid materials with hierarchical porosity as well as exotemplating approaches are presented.


Mesostructured materials aerogels inorganic-organic hybrid materials sol-gel processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Schüth, K.S.W. Sing, J. Weitkamp, Handbook of Porous Solids, (Wiley-VCH: Weinheim, Germany, 2001).Google Scholar
  2. 2.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834-10843 (1992).CrossRefGoogle Scholar
  3. 3.
    D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Frederickson, B.F. Chmelka, G.D. Stucky, Science 279, 548-552 (1998).CrossRefGoogle Scholar
  4. 4.
    B.T. Holland, C.F. Blanford, A. Stein, Science 281, 538-540 (1998).CrossRefGoogle Scholar
  5. 5.
    S.H. Park, D. Qin, Y. Xia, Adv. Mater. 10, 1045-1048 (1998).CrossRefGoogle Scholar
  6. 6.
    A. Imhof, D.J. Pine, Nature 389, 948-951 (1997).CrossRefGoogle Scholar
  7. 7.
    S.A. Davis, S.L. Burkett, N.H. Mendelson, S. Mann, Nature 385, 420-423 (1997).CrossRefGoogle Scholar
  8. 8.
    K. Nakanishi, Bull Chem. Soc. Jpn. 79, 673-691 (2006).CrossRefGoogle Scholar
  9. 9.
    K. Nakanishi, J. Porous Mater. 4, 67-112 (1997).CrossRefGoogle Scholar
  10. 10.
    J.H. Smått, S. Schunk, M. Lindén, Chem. Mater. 15, 2354-2361 (2003).CrossRefGoogle Scholar
  11. 11.
    J. Gun, O. Lev, O. Regev, S. Pevzner, A. Kucernak, J. Sol-Gel Sci. Technol. 13, 189-193 (1998).CrossRefGoogle Scholar
  12. 12.
    I. Gill, A. Ballesteros, J. Am. Chem. Soc. 120, 8587-8598 (1998).CrossRefGoogle Scholar
  13. 13.
    K. Sattler, H. Hoffmann, Progr. Colloid Polym. Sci., 112, 40-44 (1999); M. Meyer, A. Fischer, H. Hoffmann, J. Phys. Chem. B 106, 1528-1533 (2002).Google Scholar
  14. 14.
    M.A. Brook, Y. Chen, K. Guo, Z. Zhang, J.D. Brennan, J. Mater. Chem. 14, 1469-1479 (2004).CrossRefGoogle Scholar
  15. 15.
    A. Mitra, T. Imae, Y.A. Shchipunov, J. Sol-Gel Sci. Technol. 34, 127-130 (2005).CrossRefGoogle Scholar
  16. 16.
    N. Hüsing, C. Raab, V. Torma, A. Roig, H. Peterlik, Chem. Mater. 15, 2690-2692 (2003); D. Brandhuber, V. Torma, C. Raab, H. Peterlik, A. Kulak, N. Huesing, Chem. Mater. 17, 4262-4271 (2005); S. Hartmann, D. Brandhuber, N. Hüsing, Acc. Chem. Res. 40, 885-894 (2007).Google Scholar
  17. 17.
    D.M. Smith, G.W. Scherer, J.M. Anderson, J. Non-Cryst. Solids 188, 191-206 (1995).CrossRefGoogle Scholar
  18. 18.
    V. Antochshuk, M. Jaroniec, Chem. Mater. 12, 2496-2501 (2000).CrossRefGoogle Scholar
  19. 19.
    D. Brandhuber, N. Hüsing, H. Peterlik, J. Mater. Chem. 15, 3896-3902 (2005); N. Hüsing, C. Raab, V. Torma, D. Brandhuber, H. Peterlik, J. Mater. Chem. 15, 1801-1806 (2005).Google Scholar
  20. 20.
    D. Brandhuber, P. Kaiser, N. Hüsing, J. Sol-Gel Sci. Technol. 40, 131-139 (2006).CrossRefGoogle Scholar
  21. 21.
    K. Nakanishi, K. Kanamori, J. Mater. Chem. 14, 3776-3786 (2005).CrossRefGoogle Scholar
  22. 22.
    H. Dong, J.D. Brennan, J.D. Chem. Mater. 18, 4176-4182 (2006).Google Scholar
  23. 23.
    D.A. Loy, K.J. Shea, Chem. Rev. 95, 1431-1442 (1995).CrossRefGoogle Scholar
  24. 24.
    B.J. Melde, B.T. Holland, C.F. Blanford, A. Stein, Chem. Mater. 11, 3302-3308 (1999).CrossRefGoogle Scholar
  25. 25.
    S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 121, 9611-9614 (1999).CrossRefGoogle Scholar
  26. 26.
    T. Asefa, M.J. MacLachlan, N. Coobs, G.A. Ozin, Nature 402, 867-871 (1999).Google Scholar
  27. 27.
    S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki, Nature 416, 304-307 (2002).CrossRefGoogle Scholar
  28. 28.
    K. Nakanishi, Y. Kobayashi, T. Amatani, K. Hirao, T. Kodaira, Chem. Mater. 16, 3652-3658 (2004).CrossRefGoogle Scholar
  29. 29.
    D. Brandhuber, H. Peterlik, N. Huesing, Small 2, 503-506 (2006).CrossRefGoogle Scholar
  30. 30.
    R. Infhr, R. Liska, H. Lichtenegger, C. Fritscher, J. Stampfl, N. Huesing, RadTech Europe 05: Conference Proceedings, Vol. 2, pp. 489-494 (2005).Google Scholar
  31. 31.
    R. Ryoo, S.H. Joo, S. Jun, J. Phys. Chem. B 103, 7743-7746 (1999).CrossRefGoogle Scholar
  32. 32.
    J. Lee, S. Yoon, T. Hyeon, S.M. Oh, K.B. Kim, Chem. Commun. 2177-2178 (1999).Google Scholar
  33. 33.
    J.H. Knox, B. Kaur, G.R. Millward, J. Chromatogr. 352, 3-25 (1986).CrossRefGoogle Scholar
  34. 34.
    M. Kruk, M. Jaroniec, R. Ryoo, S.H. Joo, J. Phys. Chem. B 104 7960-7968 (2000).CrossRefGoogle Scholar
  35. 35.
    S. Polartz, M. Antonietti, Chem. Commun. 2593-2604 (2002).Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.Inorganic Chemistry IUlm UniversityUlmGermany

Personalised recommendations