Advertisement

Sol-Gel Synthesis of Modified Silica Anti-Reflecting Coatings

  • Arturas Zalga
  • Ivan Kazadojev
  • Aldona Beganskiene
  • Aivaras Kareiva
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

The thickness of the modified silica coatings and their transparency at specified wavelength were easily controled by changing sol concentration and the parameters of the spin-coating formation process. It was demonstrated that the modification of sols changes the maximum of the transmittance for the certain range of wavelength. Using modification process of the sols in the technology of preparation of transparent coatings, their hydrophobic properties and resistance to humidity increased. The transmittance spectra of the 3% SiO2 coatings, which were applied on different glass substrates, showed that the usage of suitable sol and coating program will result a formation of films which possess antireflective properties

Keywords

Sol-gel method silica coating anti-reflecting coating colloidal silica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Melninkaitis, K. Juskevicius, M. Maciulevicius, V. Sirutkaitis, A. Beganskiene, I. Kazadojev, A. Kareiva, D. Perednis, Proc. SPIE (Laser-Induced Damage in Optical Materials/Ed. G. J. Exarhos et al.), 6403, C/1 (2007).Google Scholar
  2. 2.
    T. Hubert, J. Schwarz and B. Oertel, J. Sol-Gel Sci. Technol., 38, 179 (2006).CrossRefGoogle Scholar
  3. 3.
    W. Hu, C. Yang, W. Zhang, G. Liu and D. Dong, J. Sol-Gel Sci. Technol., 39, 293 (2006).CrossRefGoogle Scholar
  4. 4.
    J. D. Mackenzie and E. P. Bescher, Acc. Chem. Res., to be published (2007).Google Scholar
  5. 5.
    S. Smitha, P. Shajesh, P. Mukundan and K. G. K. Warrier, J. Sol-Gel Sci. Technol., 42, 157 (2007).CrossRefGoogle Scholar
  6. 6.
    Y. Xu, D. Wu, Y. Sun, H. Gao, H. Yuan and F. Deng, J. Sol-Gel Sci. Technol., 42, 13, (2007).CrossRefGoogle Scholar
  7. 7.
    J. Abdallah, M. Silver, S. A. B. Allen and P. A. Kohl, J. Mater. Chem., 17, 873 (2007).CrossRefGoogle Scholar
  8. 8.
    S. Sakka and K. Kamiya, J. Non-Cryst. Solids, 42, 40 (1980).CrossRefGoogle Scholar
  9. 9.
    E. K. Wheeler, J. T. McWhirter, P. K. Whitman, C. Thorsness, J. De Yoreo, I. Thomas and M. Hester, Proc. SPIE (Annu. Symp. Opt. Mater. High Power Lasers), 3902, 451 (1999).Google Scholar
  10. 10.
    W. Hertl and M. L. Hair, J. Phys. Chem., 75, 2181 (1971).CrossRefGoogle Scholar
  11. 11.
    C. Zettlemoyer and H. H. Hsing, J. Coll. Interface Sci., 58, 263 (1977).CrossRefGoogle Scholar
  12. 12.
    B. Boddenberg, R. Grosse and U. Breuninger, Surf. Sci., 173, 655 (1986).CrossRefGoogle Scholar
  13. 13.
    V. V. Brei, J. Appl. Spectrosc., 56, 205 (1992).CrossRefGoogle Scholar
  14. 14.
    S. Hauuka, E. L. Lakomaa and T. Suntola, Appl. Surf. Sci., 82/83, 548 (1994).CrossRefGoogle Scholar
  15. 15.
    A. Kytokivi and S. Haukka, J. Phys. Chem., 101, 10365 (1997).Google Scholar
  16. 16.
    T. I. Suratwala, M. L. Hanna, E. L. Miller, P. K. Whitman, I. M. Thomas, P. R. Ehrmann, R. S. Maxwell and A. K. Burnham, J. Non-Cryst. Solids, 316, 349 (2003).CrossRefGoogle Scholar
  17. 17.
    W. Stober, A. Fink and E. Bohn, J. Coll. Interface Sci., 26, 62 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Arturas Zalga
    • 1
  • Ivan Kazadojev
    • 1
  • Aldona Beganskiene
    • 1
  • Aivaras Kareiva
    • 1
  1. 1.Department of General and Inorganic ChemistryVilnius UniversityVilniusLithuania

Personalised recommendations