Optical Spectra and Morphology of Photochemically Produced Ag/Au Bimetallic Clusters

  • Halyna Yashan
  • Anna Eremenko
  • Natalia Smirnova
  • Galina Krylova
  • Wenyu Huang
  • Christopher Tabor
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


The Ag-Au alloy and core-shell bimetallic nanoparticles (BMNP) in colloids can be successfully prepared by photoinduced reduction of corresponding salts in the presence of SiO2/BPads (silica film with adsorbed Benzophenone) photocatalyst in water-IPA solution as a source of ketyl radicals and BP anionradicals as the reductive agents, and CTAB as a stabilizer. Generation of BMNP during the photochemical process happens right away of UV-irradiation. The ageing of bimetallic colloids related with formation and stabilization of the alloy-to-core-shell structure occurs with time (from hours to days) and depends on the order of metal ions photoreduction, viz simultaneous or successive UV irradiation of silver and gold ions in solution, and varying of Ag/Au mole ratio. Ageing of photoproduced colloid nanocomposites accompanied by the change of structure from alloy to core-shell what is proved with UV-vis absorption spectra. Optical spectra demonstrate formation of core-shell structures, where the shell is enriched with the core atoms. For now, first conclusion should be that BMNP Ag:Au 1:1 in colloids are formed mainly with Au NP’s in the shell. Photochemically produced and stabilized within pores of silica film Ag/Au BMNPs are formed as separate Ag and Au NP’s, together with the big aggregates.


Photoinduced reduction silver gold bimetallic nanoparticles core-shell alloy UV-spectra TEM SEM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.H. Hodak, A. Henglein, G.V. Hartland, J. Phys. Chem. 104, 9954-9965 (2000).Google Scholar
  2. 2.
    S. Kundu, M. Mandal, S.K. Ghosh, T. Pal, J. Coll. Interface Sci. 272, 134-144 (2004).CrossRefGoogle Scholar
  3. 3.
    T. Siebrands, M. Giersig, P. Mulvaney, Ch.-H. Fischer, Langmuir 9, 2297-2300 (1993).CrossRefGoogle Scholar
  4. 4.
    P.V. Kamat, J. Phys. Chem. B 106, 7729-7744 (2002).Google Scholar
  5. 5.
    S. Link, Z.L. Wang, M.A. El-Sayed, J. Phys. Chem. B 103, 3529-3533 (1999). I.H. El-Sayed, X. Huang, M.A. El-Sayed, Nano Lett. 5, 829-834 (2005).Google Scholar
  6. 6.
    P. Mulvaney, M. Giershig, A. Henglein, J. Phys. Chem. 97, 7061 (1993).CrossRefGoogle Scholar
  7. 7.
    H.M. Chen, R.S. Liu, L.-Y. Jang, J.-F. Lee, S.F. Hu, Chem. Phys. Lett. 421, 118-123 (2006).CrossRefGoogle Scholar
  8. 8.
    L.M. Liz-Marzan, A. Philipse, J. Phys. Chem. 99, 15120 (1995).CrossRefGoogle Scholar
  9. 9.
    S. Devarajan, B. Vimalan, S. Sampath, J. Coll. Interface Sci. 278, 126-132 (2004).CrossRefGoogle Scholar
  10. 10.
    M.J. Hostetler, Ch.-J. Zhong, B.K.H. Yen, J. Anderegg, S.M. Gross, N.D. Evans, M. Porter, R.W. Murray, J. Am. Chem. Soc. 120, 9396-9397 (1998).CrossRefGoogle Scholar
  11. 11.
    E. Hutter, J. H. Fendler, Chem. Comm. 378-379 (2002).Google Scholar
  12. 12.
    S.X. Liu, Z.P. Qu, X.W. Han, C.L. Sun, Catal. Today 93-95, 877-884 (2004).CrossRefGoogle Scholar
  13. 13.
    N. Kometani, H. Doi, K. Asami, Y. Yonezawa., Phys. Chem. Chem. Phys. 101, 5142-5147 (2002).CrossRefGoogle Scholar
  14. 14.
    L. Longenberger, G. Mills, J. Phys. Chem. 99, 475-478 (1995).CrossRefGoogle Scholar
  15. 15.
    M. Mandal, S. Kundu, S.K. Ghosh, T. Pal, J. Photochem. Photobiol. A: Chem. 167, 17-22 (2004).CrossRefGoogle Scholar
  16. 16.
    G. Mattei, C. Maurizio, C. Sada, P. Mazzoldi, C. de Julian Fernandez, E. Cattaruzza, G. Battaglin, J. Non-Cryst. Solids 345-346, 667-670 (2004).CrossRefGoogle Scholar
  17. 17.
    S. Eustis, G. Krylova, A. Eremenko, N. Smirnova, A.W. Shill, M. El-Sayed, Photochem. Photobiol. Sci. 4(1), 154-159 (2005).CrossRefGoogle Scholar
  18. 18.
    S. Eustis, G. Krylova, A. Eremenko, N. Smirnova, C. Tabor, W. Huang, M. El-Sayed, J. Photochem. Photobiol. A: Chem. 181, 385-393 (2006).CrossRefGoogle Scholar
  19. 19.
    T. Yamada, K. Asai, A. Endo, H.S. Zhou, I. Honma, J. Mater. Sci. Lett. 19, 2167-2169 (2000).CrossRefGoogle Scholar
  20. 20.
    N. Smirnova, A. Eremenko, O. Rusina, W. Hopp, L. Spanhel, J. Sol-Gel Sci. Tech. 21, 109-113(2001)CrossRefGoogle Scholar
  21. 21.
    G. Krylova, A. Eremenko, N. Smirnova, S. Eustis, Int. J. Photoenergy 7(41), 193-198 (2005).CrossRefGoogle Scholar
  22. 22.
    G. Krylova, A. Eremenko, N. Smirnova, S. Eustis, Theor. Exp. Chem. 41(6), 348-353 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Halyna Yashan
    • 1
  • Anna Eremenko
    • 1
  • Natalia Smirnova
    • 1
  • Galina Krylova
    • 2
  • Wenyu Huang
    • 2
  • Christopher Tabor
    • 2
  1. 1.Institute of Surface ChemistryUkrainian National Academy of SciencesKyivUkraine
  2. 2.Laser Dynamic Laboratory, School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations