Molecular Precursors of Mixed Oxide Materials for Sensor Applications and Molecular Imaging

  • Gulaim A. Seisenbaeva
  • Suresh Gohil
  • Vadim G. Kessler
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

Cation-doped perovskite materials based on barium titanate, such as (Ba,Sr)(Ti,Nb)O3, are of interest as transparent ceramic semiconductors with conductivity strongly dependent both on the cation and the oxygen stoichiometry. Development of precursor systems offering proper control over the cation stoichiometry and permitting to efficiently avoid residual carbon impurities is therefore an important problem. In the present communication we report the synthesis and structural characterization of a series of hetero-metallic precursors of these materials with the general formulae M2 IITi2(L)4(OR)8(ROH)2 and M2 IIM2 V(L)2(OR)12(ROH)2, where R = Et, nPr; MII = Ba, Sr; MV = Nb, Ta; L = thd or R’OAcAc (R’ = tBu, iPr). The compounds have been characterized by single crystal and power X-ray and by 1H and 13C NMR, vibration spectroscopy and mass-spectrometry. These species are very stable in solution and display even considerable gas phase stability. Solution microhydrolysis of the molecules in these series leads most often to oxo-aggregates with the cation stoichiometry rather close to 1:1, which additionally simplifies handling of solutions based on these precursors. The obtained precursors have been used for preparation of powders and films (on Si substrates), which were characterized by SEM-EDS and X-ray powder techniques.

Keywords

Perovskite materials molecular precursors barium titanate strontium niobium tantalum doping rare earths optical imaging X-ray nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Knauth, H.L. Tuller, J. Amer. Ceram. Soc. 85, 1654 (2002).Google Scholar
  2. 2.
    M. Epiofani, R. Diaz, J. Arbiol, P. Siciliano, J.R. Morante, Chem. Mater. 18, 840 (2006).CrossRefGoogle Scholar
  3. 3.
    J.W. Fergus, Sensors & Actuators B - Chem. 123, 1169 (2007).CrossRefGoogle Scholar
  4. 4.
    D.B. Buxton, Expert Rev. Mol. Diagn. 7, 149 (2007).CrossRefGoogle Scholar
  5. 5.
    D. Maysinger, Org. Biomol. Chem. 5, 2335 (2007).CrossRefGoogle Scholar
  6. 6.
    T. Soukka, K. Kuningas, T. Rantanen, V. Haaslahti, T. Lövgren, J. Fluoresc. 15, 513 (2005).CrossRefGoogle Scholar
  7. 7.
    Z. Ye, M. Tan, G. Wang, J. Yuan, J. Fluoresc. 15, 499 (2005).CrossRefGoogle Scholar
  8. 8.
    J.H. Lee, Y.M. Huh, Y.W. Jun, J.W. Seo, J.T. Jang, H.T. Song, S. Kim, E.J. Cho, H.G. Yoon, J.S. Suh, J. Cheon, Nature Medicine 13, 95 (2007).CrossRefGoogle Scholar
  9. 9.
    C. Destree, J. Ghijsen, J.B. Nagy, Langmuir 23, 1965 (2007).CrossRefGoogle Scholar
  10. 10.
    A. Jääskeläinen, R.R. Harinen, U. Lamminamäki, T. Korpimäki, L.J. Pelliniemi, T. Soukka, M. Virta, Small 3, 1362 (2007).CrossRefGoogle Scholar
  11. 11.
    G.A. Seisenbaeva, P. Werndrup, L. Kloo, V.G. Kessler, Inorg. Chem. 40, 3815 (2001).CrossRefGoogle Scholar
  12. 12.
    G.A. Seisenbaeva, A.I. Baranov, P.A. Shcheglov, V.G. Kessler, Inorg. Chim. Acta 357, 468 (2004).CrossRefGoogle Scholar
  13. 13.
    V.G. Kessler, Chem. Comm. 1213 (2003).Google Scholar
  14. 14.
    V.G. Kessler, J. Sol-Gel Sci. Tech. 32, 11 (2004).CrossRefGoogle Scholar
  15. 15.
    V.G. Kessler, L.G. Hubert-Pfalzgraf, S. Daniele, A. Gleizes, Chem. Mater. 6, 2236 (1994).CrossRefGoogle Scholar
  16. 16.
    L.G. Hubert-Pfalzgraf, S. Daniele, J.M. Decams, J. Vaissermann, J. Sol-Gel Sci. Tech. 8, 49 (1997).Google Scholar
  17. 17.
    G.A. Seisenbaeva, S. Gohil, V.G. Kessler, J. Mater. Chem. 14, 3177 (2004).CrossRefGoogle Scholar
  18. 18.
    M. Andrieux, C. Gasqueres, C. Legros, I. Gallet, M. Herbst-Ghysel, M. Condat, V.G. Kessler, G.A. Seisenbaeva, O. Heintz, S. Poissonet, Appl. Surf. Sci. 253, 9091 (2007).CrossRefGoogle Scholar
  19. 19.
    G.I. Spijksma, H.J.M. Bouwmeester, D.H.A. Blank, A. Fischer, M. Henry, V.G. Kessler, Inorg. Chem. 44, 9938 (2006).Google Scholar
  20. 20.
    V.G. Kessler, G.I. Spijksma, G.A. Seisenbaeva, S. Håkansson, D.H.A. Blank, H.J.M. Bouwmeester, J. Sol-Gel Sci. Tech. 40, 163 (2006).CrossRefGoogle Scholar
  21. 21.
    V.G. Kessler, G.A. Seisenbaeva, S. Gohil, Surf. Sci. Tech. 201, 9082 (2007).Google Scholar
  22. 22.
    C. Sanchez, F. Ribot, P. Toledano, Chem. Mater. 3, 762 (1991).CrossRefGoogle Scholar
  23. 23.
    P. Werndrup, M. Verdenelli, F. Chassagneux, S. Parola, V.G. Kessler, J. Mater. Chem. 14, 344 (2004).CrossRefGoogle Scholar
  24. 24.
    S.R. Hall, V.M. Swinerd, F.N. Newby, A.M. Collins, S. Mann, Chem. Mater. 18, 598 (2006).CrossRefGoogle Scholar
  25. 25.
    T.Z. Ren, Z.Y. Yuan, B.L. Su, Colloid Surfaces A 241, 67 (2004).CrossRefGoogle Scholar
  26. 26.
    A. Hertz, S. Sarrade, C. Guizard, A. Julbe, J. Eur. Ceram. Soc. 26, 1195 (2006).CrossRefGoogle Scholar
  27. 27.
    R. Pazik, D. Hreniak, W. Strek, V.G. Kessler, G.A. Seisenbaeva, J. Alloys Comp. 451, 557 (2008) doi:10.1016/j.jallcom.2007.04.232.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Gulaim A. Seisenbaeva
    • 1
  • Suresh Gohil
    • 1
  • Vadim G. Kessler
    • 1
  1. 1.Department of ChemistrySLUUppsalaSweden

Personalised recommendations