Skip to main content

Sensors with Biorecognition Elements Entrapped into Silica Based Polymers

  • Conference paper
Sol-Gel Methods for Materials Processing

Abstract

The paper presents characteristics of biosensors with biorecognition elements entrapped in silica based polymers developed and tested in the Institute of Chemical Process Fundamentals ASCR, Prague (ICPF). Prepolymerized alkoxysilanes were used for preparing whole cell biosensors of phenol, naphthalene or salicylic acid intermediate, and polychlorinated biphenyls (PCB). Modifications of prepolymer composition and immobilization procedure could increase viability of entrapped cells but can also influence sensors properties. UV curable polymers with silica skeleton, ORMOCER®s, have been matrices of a sensitive element of optical sensor for the in-situ continuous monitoring of glucose in bioreactors. This enzymatic sensor, developed within the project MATINOES, displayed 3 week stability during fermentation in a laboratory bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Brányik et al., Application of bioencapsulation by sol-gel method for construction of biosensor, Proceedings of International Workshop Bioencapsulation V, Potsdam, Ger., Sept. 23-25 (1996).

    Google Scholar 

  2. J. Trögl et al., Selectivity of whole cell optical biosensor with immobilized bioreporter pseudomonas fluorescens HK44, Sens. Actuators B 107(1), 98-103 (2005).

    Article  Google Scholar 

  3. G. Kuncová et al., Monitoring of the viability of cells immobilized by sol-gel process, J. Sol-Gel Sci. Technol. 31(1-3), 335-342 (2004).

    Article  Google Scholar 

  4. J. Riedel et al., Microbial sensors for determination of aromatics and their chloroderivatives. Part III: Determination of chlorinated phenols using a biosensor containing Trischoporon beigelii (cutaneum), Appl. Microbiol. Biotechnol. 43, 7-9 (1995).

    Article  CAS  Google Scholar 

  5. T. Brányik et al., Changes in phenol oxidation rate of a mixed microbial culture caused by sol-gel immobilization, Biotechnol. Lett. 22(7), 555-560 (2000).

    Article  Google Scholar 

  6. E.A. Meighen, Enzymes and genes from the lux operons of bioluminescent bacteria, Ann. Rev. Microbiol. 42, 151-176 (1988).

    Article  CAS  Google Scholar 

  7. S. Ripp et al., Control field release of a bioluminescent genetically engineered micro-organism for bioremediation process monitoring and control, Environ. Sci. Technol. 34, 846-853 (2000).

    Article  CAS  Google Scholar 

  8. E. Valdman et al., Naphtalene detection by a bioluminescence sensor applied to wastevate samples, Sens. Actuators B: Chem 103, 7-12 (2004).

    Article  Google Scholar 

  9. A. Heitzer, et al., Optical biosensor for environmental on-line monitoring of naphthalene and salicylate with an immobilized bioluminescent catabolic reporter bacterium, Appl. Environ. Microbiol. 60, 1487-1494 (1994).

    CAS  Google Scholar 

  10. J. Trögl, et al., Response of the bioluminescent bioreporter Pseudomonas fluorescens HK44 to analogues of naphthalene and salicylic acid. Folia Microbiol. 52(1), 3-14 (2007).

    Article  Google Scholar 

  11. B. Vrana et al., Aerobic biodegradation of polychlorinated biphenyls by bacteria, Biologia 53, 251-266. (1998).

    CAS  Google Scholar 

  12. P. Gavlasová et al., Photon06: Abstract Book, pp. 83-84 , Manchester, UK, 04-07 Sept. (2006).

    Google Scholar 

  13. G. Kuncova et al., Optical detection of polychlorinated biphenyls. Proceeding of SPIE 3853, 72-8 (1999).

    Article  CAS  Google Scholar 

  14. D. Yu et al., Aqueous sol-gel encapsulation of genetically engineered Moraxella spp. cells for the detection of organophosphates, Biosens. Bioelectron. 20, 1433-1437 (2005).

    Article  CAS  Google Scholar 

  15. P. Scully et al., Optical fibre biosensors using enzymatic transducers to monitor glucose, Meas. Sci. Technol. 18, 1-10 (2007).

    Article  Google Scholar 

  16. ICPF (Report 2006) http://www.icpf.cas.cz/bio/matinoes.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Kuncová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Kuncová, G. (2008). Sensors with Biorecognition Elements Entrapped into Silica Based Polymers. In: Innocenzi, P., Zub, Y.L., Kessler, V.G. (eds) Sol-Gel Methods for Materials Processing. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8514-7_27

Download citation

Publish with us

Policies and ethics