Advertisement

Characterization of Gels and Networks Using New Calorimetric Techniques

  • Jean-Marie Nedelec
  • Mohamed Baba
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

Recent developments of calorimetric techniques for the characterization of porous materials and gels are presented. In particular thermoporosimetry is introduced along with recent applications to soft materials like gels and polymers. In a second part, photo-DSC technique is presented with the new developments for the study of gels networks and photo-ageing of polymers. An overview of the potential of the two techniques towards sol-gel materials is finally given.

Keywords

Sol-gel calorimetry photo-DSC gels networks crosslinking porous materials polymers hybrid organic-inorganic materials confinement effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Gibbs, Collected works, New Haven, CT: Yale University Press (1928).Google Scholar
  2. 2.
    W. Kunh, E. Peterli and H. Majer, Freezing point depression of gels produced by high polymer network, J. Polymer Sci., 16, 539 (1955).CrossRefGoogle Scholar
  3. 3.
    G. Fagerlund, Determination of pore-size distribution from freezing-point depression, Mater. Struct., 6(3), 215 (1973).Google Scholar
  4. 4.
    M. Brun, A. Lallemand, J.-F. Quinson and C. Eyraud, A new method for the simultaneous determination of the size and shape of pores: the thermoporometry, Thermochim. Acta, 21, 59 (1977).CrossRefGoogle Scholar
  5. 5.
    P. Gane, C. Ridgway, E. Lehtinen, R. Valiullin, I. Furo, J. Schoelkopf, H. Paulapuro and J. Daicic, Comparison of NMR cryoporometry, Mercury intrusion porosimetry, and DSC thermoporosimetry in characterizing pore size distributions of compressed finely ground calcium carbonate structures, Ind. Eng. Chem. Res., 43, 7920 (2004).CrossRefGoogle Scholar
  6. 6.
    E. Robens, B. Benzler and K.K. Unger, Comparison of sorptometric and thermoporometric measurements on porous glass and some others, J. Therm. Anal. Calorim., 56, 323 (1999).CrossRefGoogle Scholar
  7. 7.
    C.L. Jackson and G.B. McKenna, The melting behavior of organic materials confined in porous solids, J. Chem. Phys., 93(12), 9002 (1990).CrossRefGoogle Scholar
  8. 8.
    M. Wulff, Pore size determination by thermoporometry using acetonitrile, Thermochim. Acta, 419, 291 (2004).CrossRefGoogle Scholar
  9. 9.
    T. Takei, Y. Ooda, M. Fuji, T. Watanabe and M. Chikazawa, Anomalous phase transition behavior of carbon tetrachloride in silica pores, Thermochim. Acta, 199, 352-353 (2000).Google Scholar
  10. 10.
    B. Husár, S. Commereuc, L. Lukáþ, S. Chmela, J.M. Nedelec and M. Baba, Carbon tetra-chloride as a thermoporometry liquid probe to study the cross-linking of styrene copolymer networks, J. Phys. Chem. B, 110, 5315 (2006).CrossRefGoogle Scholar
  11. 11.
    N. Billamboz, M. Baba, M. Grivet and J.M. Nedelec, A general law for predictive use of thermoporosimetry as a tool for the determination of textural properties of divided media, J. Phys. Chem. B, 108, 12032 (2004).CrossRefGoogle Scholar
  12. 12.
    N. Bahloul, M. Baba and J.M. Nedelec, Universal behavior of linear alkanes in a confined medium: toward a calibrationless use of thermoporometry, J. Phys. Chem. B, 109, 16227 (2005).CrossRefGoogle Scholar
  13. 13.
    M. Baba, J.M. Nedelec, J. Lacoste, J.L. Gardette and M. Morel, Crosslinking of elastomers resulting from ageing: use of thermoporosimetry to characterise the polymeric network with n-heptane as condensate, Polym. Degrad. Stabil., 80(2), 305 (2003).CrossRefGoogle Scholar
  14. 14.
    M. Baba, J.M. Nedelec, J. Lacoste and J.L. Gardette, Calibration of cyclohexane solid-solid phase transition thermoporosimetry and application to the study of crosslinking of elastomers upon aging, J. Non-Cryst. Solids, 315, 228 (2003).CrossRefGoogle Scholar
  15. 15.
    M. Baba, J.M. Nedelec et al., unpublished results.Google Scholar
  16. 16.
    J.M. Nedelec, J.P.E. Grolier and M. Baba, Thermoporosimetry: a powerful tool to study the cross-linking in gels networks, J. Sol-Gel Sci. Tech., 40, 191 (2006).CrossRefGoogle Scholar
  17. 17.
    C.L. Jackson and G.B. McKenna, On the anomalous freezing and melting of solvent crystals in swollen gels of natural rubber, Rubber Chem. Technol., 64(5), 760 (1991).Google Scholar
  18. 18.
    J.M. Nedelec and M. Baba, On the use of monolithic sol-gel derived mesoporous silica for the calibration of thermoporisemetry using various solvents, J. Sol-Gel Sci. Tech., 31, 169 (2004).CrossRefGoogle Scholar
  19. 19.
    Q. Qin and G.B. McKenna, Melting of solvents nanoconfined by polymers and networks, J. Polym. Sci. B, 44, 3475 (2006).CrossRefGoogle Scholar
  20. 20.
    P.J. Flory, Thermodynamics of high polymer solutions, J. Chem. Phys., 10, 51 (1942).CrossRefGoogle Scholar
  21. 21.
    M.L. Huggins, Theory of solutions of high polymers, J. Am. Chem. Soc., 64, 1712 (1942).CrossRefGoogle Scholar
  22. 22.
    M. Iza, S. Woerly, C. Damnumah, S. Kaliaguine and M. Bousmina, Determination of pore size distribution for mesoporous materials and polymeric gels by means of DSC measure-ments: thermoporometry, Polymer, 41, 5885 (2000).CrossRefGoogle Scholar
  23. 23.
    S.I. Nakao, Determination of pore size and pore size distribution : 3. Filtration membranes, J. Membr. Sci., 96, 131 (1994).CrossRefGoogle Scholar
  24. 24.
    K.J. Kim, A.G. Fane, R.B. Aim, M.G. Liu, G. Jonsson, I.C. Tessaro, A.P. Broek and D. Bargeman, A comparative study of techniques used for porous membranes characteri- zation - pore characterization, J. Membr. Sci., 87, 35 (1994).CrossRefGoogle Scholar
  25. 25.
    J.N. Hay and P.R. Laity, Observations of water migration during thermoporometry studies of cellulose films, Polymer, 41, 6171 (2000).CrossRefGoogle Scholar
  26. 26.
    A. Ksiqzczak, A. Radomski and T. Zielenkiewicz, Nitrocellulose porosity - thermoporo- metry, J. Therm. Anal. Calorim., 74, 559 (2003).CrossRefGoogle Scholar
  27. 27.
    G. Rohman, D. Grande, F. Lauprêtre, S. Boileau and P. Guérin, Design of porous polymeric materials from Interpenetrating Polymer Networks (IPNs): poly(DL-lactide)/poly(methyl methacrylate)-based semi-IPN systems, Macromolecules, 38, 7274 (2005).CrossRefGoogle Scholar
  28. 28.
    N. Billamboz, J.M. Nedelec, M. Grivet and M. Baba, Cross-linking of polyolefins : a study by thermoporosimetry with benzene derivatives swelling solvents, Chem. Phys. Chem., 6 (6), 1126 (2005).Google Scholar
  29. 29.
    A. Endruweit, M.S. Johnson and A.C. Long, Curing of composite components by ultraviolet radiation: a review, Polym. Composite., 27(2), 119 (2006).CrossRefGoogle Scholar
  30. 30.
    R.M. Williams, I.V. Khudyakov, M.B. Purvis, B.J. Overton and N.J. Turro, Direct and sensitized photolysis of phosphine oxide polymerization photoinitiators in the presence and absence of a model acrylate monomer: a time resolved EPR, cure monitor, and PhotoDSC study, J. Phys. Chem. B, 104, 10437 (2000).CrossRefGoogle Scholar
  31. 31.
    I.V. Khudyakov, W.S. Fox and M.B. Purvis, Photopolymerization of vinyl acrylate studied by PhotoDSC, Ind. Eng. Chem. Res., 40, 3092 (2001).CrossRefGoogle Scholar
  32. 32.
    V. Narayanan and A.B. Scranton, Photopolymerization of composites, Trends Polym. Sci., 5, 415 (1997).Google Scholar
  33. 33.
    I.V. Khudyakov, J.C. Legg, M.B. Purvis and B.J. Overton, Kinetics of photopolymerization of acrylates with functionality of 1-6, Ind. Eng. Chem. Res., 38, 3353 (1999).CrossRefGoogle Scholar
  34. 34.
    N. Grassie and G. Scott, Polymer degradation and stability, Cambridge: Cambridge University Press (1985).Google Scholar
  35. 35.
    B. Mattson and B. Stenberg, Thermo-oxidative degradation and stabilisation of rubber materials, Progr. Rubber. Plastic. Tech., 9, 1 (1985).Google Scholar
  36. 36.
    J. Lemaire, Predicting polymer durability, Chemtec, 10, 42 (1996).Google Scholar
  37. 37.
    N.S. Allen, M. Edge, A. Ortega, G. Sandoval, C. M. Liauw, J. Verran, J. Stratton and R.B. McIntyre, Degradation and stabilisation of polymers and coatings: nano versus pigmentary titania particles, Polym. Degrad. Stabil., 85, 927 (2004).CrossRefGoogle Scholar
  38. 38.
    M. Morel, J. Lacoste and M. Baba, Photo-DSC I: a new tool to study the semi-crystalline polymer accelerated photo-ageing, Polymer, 46, 9274 (2005).CrossRefGoogle Scholar
  39. 39.
    P.-O. Bussiere, M. Baba, J.-L. Gardette and J. Lacoste. Characterization of photodegradation of polybutadiene and polyisoprene: chronology of crosslinking and chain-scission, Polym. Degrad. Stabil., 88, 182 (2005).CrossRefGoogle Scholar
  40. 40.
    J.M. Harris, Poly(ethylene glycol) chemistry: biotechnical an biomedical application, New York: Plenum (1992).Google Scholar
  41. 41.
    J.-M. Blin, A. Léonard, Z-Y. Yuan, L. Gigot, A. Vantomme, A.K. Cheetham and B.L. Su, Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies, Angew. Chem. Int. Ed, 42, 2872 (2003).CrossRefGoogle Scholar
  42. 42.
    S.M. Rele, W. Cui, L. Wang, S. Hou, G. Barr-Zarse, D. Tatton, Y. Gnanou, J.D. Esko and E.L. Chaikof, Dendrimer-like PEO glycopolymers exhibit anti-inflammatory properties, J. Am. Chem. Soc., 127(29), 10132 (2005).CrossRefGoogle Scholar
  43. 43.
    S. Morlat and J.-L. Gardette, Phototransformation of water-soluble polymers. I: photo- and thermooxidation of poly(ethylene oxide) in solid state, Polymer, 42, 6071 (2001).CrossRefGoogle Scholar
  44. 44.
    C. Wilhem and J.-L. Gardette, Infrared analysis of the photochemical behaviour of seg-mented polyurethanes: aliphatic poly(ether-urethane)s, Polymer, 39, 5973 (1998).CrossRefGoogle Scholar
  45. 45.
    F. Fraisse, S. Morlat-Thérias, J.-L. Gardette, J.-M. Nedelec and M. Baba, In situ study of the accelerated ageing of poly(ethylene oxide), J. Phys. Chem. B, 110, 14678 (2006).CrossRefGoogle Scholar
  46. 46.
    F. Fraisse, J.-M. Nedelec, J.-P. E. Grolier and M. Baba, Isothermal crystallization kinetics of in situ photo and thermo aged poly(ethylene oxide) using PhotoDSC, Phys. Chem. Chem. Phys., 9, 2137 (2007).CrossRefGoogle Scholar
  47. 47.
    M. Avrami, Kinetics of phase change. I. General theory, J. Chem. Phys., 7, 1103 (1939).CrossRefGoogle Scholar
  48. 48.
    M. Avrami, Kinetics of phase change. II. Transformation-time relations for random dis-tribution of nuclei, J. Chem. Phys., 8, 212 (1940).CrossRefGoogle Scholar
  49. 49.
    M. Avrami, Granulation, phase change, and microstructure kinetics of phase change. III, J. Chem. Phys., 9, 177 (1941).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.TransChiMiC, Laboratoire des Matériaux Inorganiques, CNRS UMR 6002Université Blaise Pascal & ENSCCFAubièreFrance
  2. 2.Laboratoire de Thermodynamique des Solutions et des Polymères, CNRS UMR 6003Université Blaise Pascal & ENSCCFAubièreFrance

Personalised recommendations