Skip to main content

Quantum Dimer Models and Exotic Orders

  • Conference paper
Quantum Magnetism

Part of the book series: NATO Science for Peace and Security Series ((NAPSB))

  • 1443 Accesses

Abstract

We discuss how quantum dimer models may be used to provide “proofs of principle” for the existence of exotic magnetic phases in quantum spin systems. The material presented here is an overview of some of the results of Refs. [8] and [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev. B 35, R8865 (1987).

    Article  ADS  Google Scholar 

  2. D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988).

    Article  ADS  Google Scholar 

  3. P. Bak, Rep. Prog. Phys. 45, 587 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).

    Article  Google Scholar 

  5. P. W. Anderson, Science 235, 1196 (1987).

    Article  ADS  Google Scholar 

  6. P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi and F. C. Zhang, J. Phys. Cond. Mat. 16, R755 (2004).

    Article  ADS  Google Scholar 

  7. S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998).

    Article  ADS  Google Scholar 

  8. K. S. Raman, R. Moessner, and S. L. Sondhi, Phys. Rev. B 72, 064413 (2005).

    Article  ADS  Google Scholar 

  9. S. Papanikolaou, K. S. Raman, and E. Fradkin, Phys. Rev. B 75, 094406 (2007).

    Article  ADS  Google Scholar 

  10. R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001).

    Article  ADS  Google Scholar 

  11. A. Vishwanath, L. Balents, and T. Senthil, Phys. Rev. B 69, 224416 (2004).

    Article  ADS  Google Scholar 

  12. E. Fradkin, D. A. Huse, R. Moessner, V. Oganesyan, and S. L. Sondhi, Phys. Rev. B 69, 224415 (2004).

    Article  ADS  Google Scholar 

  13. 13. More precisely, the winding number per unit length (also called the “tilt”) of the crystalline state could approach a value incommensurate with the lattice.

    Google Scholar 

  14. G. Misguich, B. Bernu, C. Lhuillier, and C. Waldtmann, Phys. Rev. Lett. 81, 1098 (1998).

    Article  ADS  Google Scholar 

  15. G. Misguich, D. Serban, and V. Pasquier, Phys. Rev. Lett. 89, 137202 (2002).

    Google Scholar 

  16. 16. For example, in the fully staggered state, every dimer would have four attractive a bonds.

    Google Scholar 

  17. V. I. Pokrovsky and A. L. Talapov, JETP 75, 1151 (1978).

    Google Scholar 

  18. 18. In calculating the energy of the domain wall states in perturbation theory, there will be con-tributions proportional to the number of staggered or columnar strips, which we refer to as “self-energy” terms, as well as contributions dependent on the spacing of the staggered domains, which we refer to as “interaction” terms.

    Google Scholar 

  19. M. E. Fisher and W. Selke, Phys. Rev. Lett. 44, 1502 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  20. P. Bak and J. von Boehm, Phys. Rev. B 21, 5297 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  21. 21. An important feature of our construction is that the Hamiltonian is isotropic, i.e. there are no preferred directions. This requirement aside, a quantum analog of Ref. [19] is discussed in: A. B. Harris, C. Micheletti, and J. M. Yeomans, Phys. Rev. Lett. 74, 3045 (1995); Phys. Rev. B 52, 6684 (1995).

    Google Scholar 

  22. 22. In order to interpet a dimer connecting sites 1 and 2 as a valence bond, we also need to specify the overall sign of the singlet, i.e. ± √12 (1↑ 2↓ − 1↓ 2↑ ).

    Google Scholar 

  23. S. Fujimoto, Phys. Rev. B 72, 024429 (2005).

    Google Scholar 

  24. D. J. Klein, J. Phys. A. Math. Gen. 15, 661 (1982).

    Google Scholar 

  25. C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1388 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  26. J. T. Chayes, L. Chayes, and S. A. Kivelson, Commun. Math. Phys. 123, 53 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  27. 27. N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991). O. Tchernyshyov, R. Moessner, and S. L. Sondhi, cond-mat/0408498.

    Google Scholar 

  28. A. W. Sandvik and R. Moessner, Phys. Rev. B 73, 144504 (2006) K. S. D. Beach and A. W. Sandvik, Nucl. Phys. B750, 142 (2006).

    Google Scholar 

  29. L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and K. Sengupta, Phys. Rev. B 71, 144509 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this paper

Cite this paper

Raman, K.S., Fradkin, E., Moessner, R., Papanikolaou, S., Sondhi, S.L. (2008). Quantum Dimer Models and Exotic Orders. In: Barbara, B., Imry, Y., Sawatzky, G., Stamp, P.C.E. (eds) Quantum Magnetism. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8512-3_10

Download citation

Publish with us

Policies and ethics