Advertisement

Retinal Pigment Epithelial Cells: Development In Vivo and Derivation from Human Embryonic Stem Cells In Vitro for Treatment of Age-Related Macular Degeneration

  • Dennis O. CleggEmail author
  • David Buchholz
  • Sherry Hikita
  • Teisha Rowland
  • Qirui Hu
  • Lincoln V. Johnson
Part of the Advances in Biomedical Research book series (ABIR, volume 1)

Abstract

The retinal pigment epithelium (RPE) plays a key role in supporting photoreceptor survival and function, and RPE loss and dysfunction in age-related macular degeneration (AMD) leads to photoreceptor death. AMD is one of the leading causes of blindness, yet there is neither a cure nor a way to prevent it. In this chapter, we discuss recent progress in the study of AMD, summarize what is known about RPE development, and review recent progress in deriving RPE from human embryonic stem cells (hESC). The RPE is derived from the optic vesicle, which in turn is derived from the eye field of the anterior neural plate. Multiple extracellular signaling factors and transcriptional regulators have been identified that are crucial to RPE development. Knowledge of these events is guiding efforts to understand how hESC differentiate into RPE cells that might be used therapeutically for AMD. RPE derived from hESC are remarkably similar to fetal RPE with respect to gene expression and cellular function. Future research on these cells will lead to a better understanding of RPE development and the advancement of cellular therapy for AMD.

Keywords

Age-related macular degeneration human embryonic stem cells ocular development retinal cells retinal pigment epithelium 

Abbreviations

AMD

Age-related macular degeneration

hESC

Human embryonic stem cells

hESC-RPE

RPE-like cells derived from human embryonic stem cells

PEDF

Pigment epithelium-derived factor

RPE

Retinal pigment epithelium

VEGF

Vascular endothelial growth factor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdelsalam, A., L. Del Priore, and M.A. Zarbin, Drusen in age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation-induced regression. Surv Ophthalmol, 1999. 44(1): 1–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Abrera-Abeleda, M.A., C. Nishimura, J.L. Smith, S. Sethi, J.L. McRae, B.F. Murphy, G. Silvestri, C. Skerka, M. Jozsi, P.F. Zipfel, G.S. Hageman, and R.J. Smith, Variations in the complement regulatory genes factor H (CFH) and factor H related 5 (CFHR5) are associated with membranoproliferative glomerulonephritis type II (dense deposit disease). J Med Genet, 2006. 43(7): 582–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Allikmets, R., N.F. Shroyer, N. Singh, J.M. Seddon, R.A. Lewis, P.S. Bernstein, A. Peiffer, N.A. Zabriskie, Y. Li, A. Hutchinson, M. Dean, J.R. Lupski, and M. Leppert, Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science, 1997. 277(5333): 1805–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson, D.H., R.F. Mullins, G.S. Hageman, and L.V. Johnson, A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol, 2002. 134(3): 411–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson, D.H., K.C. Talaga, A.J. Rivest, E. Barron, G.S. Hageman, and L.V. Johnson, Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res, 2004. 78(2): 243–56.PubMedCrossRefGoogle Scholar
  6. 6.
    Ando, H., M. Kobayashi, T. Tsubokawa, K. Uyemura, T. Furuta, and H. Okamoto, Lhx2 mediates the activity of Six3 in zebrafish forebrain growth. Dev Biol, 2005. 287(2): 456–68.PubMedCrossRefGoogle Scholar
  7. 7.
    Andoniadou, C.L., M. Signore, E. Sajedi, C. Gaston-Massuet, D. Kelberman, A.J. Burns, N. Itasaki, M. Dattani, and J.P. Martinez-Barbera, Lack of the murine homeobox gene Hesx1 leads to a posterior transformation of the anterior forebrain. Development, 2007. 134(8): 1499–508.PubMedCrossRefGoogle Scholar
  8. 8.
    Andreazzoli, M., G. Gestri, D. Angeloni, E. Menna, and G. Barsacchi, Role of Xrx1 in Xenopus eye and anterior brain development. Development, 1999. 126(11): 2451–60.PubMedGoogle Scholar
  9. 9.
    Andreazzoli, M., G. Gestri, F. Cremisi, S. Casarosa, I.B. Dawid, and G. Barsacchi, Xrx1 controls proliferation and neurogenesis in Xenopus anterior neural plate. Development, 2003. 130(21): 5143–54.PubMedCrossRefGoogle Scholar
  10. 10.
    Aoki, H., A. Hara, S. Nakagawa, T. Motohashi, M. Hirano, Y. Takahashi, and T. Kunisada, Embryonic stem cells that differentiate into RPE cell precursors in vitro develop into RPE cell monolayers in vivo. Exp Eye Res, 2006. 82(2): 265–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Arnhold, S., P. Heiduschka, H. Klein, Y. Absenger, S. Basnaoglu, F. Kreppel, S. Henke-Fahle, S. Kochanek, K.U. Bartz-Schmidt, K. Addicks, and U. Schraermeyer, Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats. Invest Ophthalmol Vis Sci, 2006. 47(9): 4121–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Bailey, T.J., H. El-Hodiri, L. Zhang, R. Shah, P.H. Mathers, and M. Jamrich, Regulation of vertebrate eye development by Rx genes. Int J Dev Biol, 2004. 48(8–9): 761–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Baumer, N., T. Marquardt, A. Stoykova, D. Spieler, D. Treichel, R. Ashery-Padan, and P. Gruss, Retinal pigmented epithelium determination requires the redundant activities of Pax2 and Pax6. Development, 2003. 130(13): 2903–15.PubMedCrossRefGoogle Scholar
  14. 14.
    Behesti, H., J.K. Holt, and J.C. Sowden, The level of BMP4 signaling is critical for the regulation of distinct T-box gene expression domains and growth along the dorso-ventral axis of the optic cup. BMC Dev Biol, 2006. 6: 62.PubMedCrossRefGoogle Scholar
  15. 15.
    Bharti, K., M.T. Nguyen, S. Skuntz, S. Bertuzzi, and H. Arnheiter, The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. Pigment Cell Res, 2006. 19(5): 380–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Brem, R.B., S.G. Robbins, D.J. Wilson, L.M. O’Rourke, R.N. Mixon, J.E. Robertson, S.R. Planck, and J.T. Rosenbaum, Immunolocalization of integrins in the human retina. Invest Ophthalmol Vis Sci, 1994. 35(9): 3466–74.PubMedGoogle Scholar
  17. 17.
    Burke, J.M., C.M. Skumatz, P.E. Irving, and B.S. McKay, Phenotypic heterogeneity of retinal pigment epithelial cells in vitro and in situ. Exp Eye Res, 1996. 62(1): 63–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Carreira, S., J. Goodall, I. Aksan, S.A. La Rocca, M.D. Galibert, L. Denat, L. Larue, and C.R. Goding, Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature, 2005. 433(7027): 764–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Carron, C., A. Bourdelas, H.Y. Li, J.C. Boucaut, and D.L. Shi, Antagonistic interaction between IGF and Wnt/JNK signaling in convergent extension in Xenopus embryo. Mech Dev, 2005. 122(11): 1234–47.PubMedCrossRefGoogle Scholar
  20. 20.
    Cavodeassi, F., F. Carreira-Barbosa, R.M. Young, M.L. Concha, M.L. Allende, C. Houart, M. Tada, and S.W. Wilson, Early stages of zebrafish eye formation require the coordinated activity of Wnt11, Fz5, and the Wnt/beta-catenin pathway. Neuron, 2005. 47(1): 43–56.PubMedCrossRefGoogle Scholar
  21. 21.
    Chow, R.L. and R.A. Lang, Early eye development in vertebrates. Annu Rev Cell Dev Biol, 2001. 17: 255–96.PubMedCrossRefGoogle Scholar
  22. 22.
    Coffey, P.J., C. Gias, C.J. McDermott, P. Lundh, M.C. Pickering, C. Sethi, A. Bird, F.W. Fitzke, A. Maass, L.L. Chen, G.E. Holder, P.J. Luthert, T.E. Salt, S.E. Moss, and J. Greenwood, Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction. Proc Natl Acad Sci U S A, 2007. 104(42): 16651–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Crabb, J.W., M. Miyagi, X. Gu, K. Shadrach, K.A. West, H. Sakaguchi, M. Kamei, A. Hasan, L. Yan, M.E. Rayborn, R.G. Salomon, and J.G. Hollyfield, Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A, 2002. 99(23): 14682–7.PubMedCrossRefGoogle Scholar
  24. 24.
    da Cruz, L., F.K. Chen, A. Ahmado, J. Greenwood, and P. Coffey, RPE transplantation and its role in retinal disease. Prog Retin Eye Res, 2007. 26(6): 598–635.PubMedCrossRefGoogle Scholar
  25. 25.
    Dakubo, G.D., Y.P. Wang, C. Mazerolle, K. Campsall, A.P. McMahon, and V.A. Wallace, Retinal ganglion cell-derived sonic hedgehog signaling is required for optic disc and stalk neuroepithelial cell development. Development, 2003. 130(13): 2967–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Dastgheib, K. and W.R. Green, Granulomatous reaction to Bruch’s membrane in age-related macular degeneration. Arch Ophthalmol, 1994. 112(6): 813–8.PubMedGoogle Scholar
  27. 27.
    Del Bene, F., K. Tessmar-Raible, and J. Wittbrodt, Direct interaction of geminin and Six3 in eye development. Nature, 2004. 427(6976): 745–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Del Priore, L.V., Y.H. Kuo, and T.H. Tezel, Age-related changes in human RPE cell density and apoptosis proportion in situ. Invest Ophthalmol Vis Sci, 2002. 43(10): 3312–8.PubMedGoogle Scholar
  29. 29.
    Dentchev, T., A.H. Milam, V.M. Lee, J.Q. Trojanowski, and J.L. Dunaief, Amyloid-beta is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas. Mol Vis, 2003. 9: 184–90.PubMedGoogle Scholar
  30. 30.
    Dheen, T., I. Sleptsova-Friedrich, Y. Xu, M. Clark, H. Lehrach, Z. Gong, and V. Korzh, Zebrafish tbx-c functions during formation of midline structures. Development, 1999. 126(12): 2703–13.PubMedGoogle Scholar
  31. 31.
    Dorsky, R.I., L.C. Sheldahl, and R.T. Moon, A transgenic Lef1/beta-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev Biol, 2002. 241(2): 229–37.PubMedCrossRefGoogle Scholar
  32. 32.
    Dunaief, J.L., T. Dentchev, G.S. Ying, and A.H. Milam, The role of apoptosis in age-related macular degeneration. Arch Ophthalmol, 2002. 120(11): 1435–42.PubMedGoogle Scholar
  33. 33.
    Eagleson, G.W. and R.D. Dempewolf, The role of the anterior neural ridge and Fgf-8 in early forebrain patterning and regionalization in Xenopus laevis. Comp Biochem Physiol B Biochem Mol Biol, 2002. 132(1): 179–89.PubMedCrossRefGoogle Scholar
  34. 34.
    Edwards, A.O., R. Ritter, 3rd, K.J. Abel, A. Manning, C. Panhuysen, and L.A. Farrer, Complement factor H polymorphism and age-related macular degeneration. Science, 2005. 308(5720): 421–4.PubMedCrossRefGoogle Scholar
  35. 35.
    England, S.J., G.B. Blanchard, L. Mahadevan, and R.J. Adams, A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia. Development, 2006. 133(23): 4613–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Esteve, P. and P. Bovolenta, Secreted inducers in vertebrate eye development: more functions for old morphogens. Curr Opin Neurobiol, 2006. 16(1): 13–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Evans, J.R., Risk factors for age-related macular degeneration. Prog Retin Eye Res, 2001. 20(2): 227–53.PubMedCrossRefGoogle Scholar
  38. 38.
    Fariss, R.N., S.S. Apte, B.R. Olsen, K. Iwata, and A.H. Milam, Tissue inhibitor of metalloproteinases-3 is a component of Bruch’s membrane of the eye. Am J Pathol, 1997. 150(1): 323–8.PubMedGoogle Scholar
  39. 39.
    Fuhrmann, S., E.M. Levine, and T.A. Reh, Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development, 2000. 127(21): 4599–609.PubMedGoogle Scholar
  40. 40.
    Gallardo, M.E., J. Lopez-Rios, I. Fernaud-Espinosa, B. Granadino, R. Sanz, C. Ramos, C. Ayuso, M.J. Seller, H.G. Brunner, P. Bovolenta, and S. Rodriguez de Cordoba, Genomic cloning and characterization of the human homeobox gene SIX6 reveals a cluster of SIX genes in chromosome 14 and associates SIX6 hemizygosity with bilateral anophthalmia and pituitary anomalies. Genomics, 1999. 61(1): 82–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Gehrs, K.M., D.H. Anderson, L.V. Johnson, and G.S. Hageman, Age-related macular degeneration–emerging pathogenetic and therapeutic concepts. Ann Med, 2006. 38(7): 450–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Geisen, P., J.R. McColm, B.M. King, and M.E. Hartnett, Characterization of barrier properties and inducible VEGF expression of several types of retinal pigment epithelium in medium-term culture. Curr Eye Res, 2006. 31(9): 739–48.PubMedCrossRefGoogle Scholar
  43. 43.
    Gestri, G., M. Carl, I. Appolloni, S.W. Wilson, G. Barsacchi, and M. Andreazzoli, Six3 functions in anterior neural plate specification by promoting cell proliferation and inhibiting Bmp4 expression. Development, 2005. 132(10): 2401–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Gold, B., J.E. Merriam, J. Zernant, L.S. Hancox, A.J. Taiber, K. Gehrs, K. Cramer, J. Neel, J. Bergeron, G.R. Barile, R.T. Smith, G.S. Hageman, M. Dean, and R. Allikmets, Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet, 2006. 38(4): 458–62.PubMedCrossRefGoogle Scholar
  45. 45.
    Gould, S.E. and R.M. Grainger, Neural induction and antero-posterior patterning in the amphibian embryo: past, present and future. Cell Mol Life Sci, 1997. 53(4): 319–38.PubMedCrossRefGoogle Scholar
  46. 46.
    Grisanti, S. and C. Guidry, Transdifferentiation of retinal pigment epithelial cells from epithelial to mesenchymal phenotype. Invest Ophthalmol Vis Sci, 1995. 36(2): 391–405.PubMedGoogle Scholar
  47. 47.
    Hageman, G.S., P.J. Luthert, N.H. Victor Chong, L.V. Johnson, D.H. Anderson, and R.F. Mullins, An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res, 2001. 20(6): 705–32.PubMedCrossRefGoogle Scholar
  48. 48.
    Hageman, G.S., D.H. Anderson, L.V. Johnson, L.S. Hancox, A.J. Taiber, L.I. Hardisty, J.L. Hageman, H.A. Stockman, J.D. Borchardt, K.M. Gehrs, R.J. Smith, G. Silvestri, S.R. Russell, C.C. Klaver, I. Barbazetto, S. Chang, L.A. Yannuzzi, G.R. Barile, J.C. Merriam, R.T. Smith, A.K. Olsh, J. Bergeron, J. Zernant, J.E. Merriam, B. Gold, M. Dean, and R. Allikmets, A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A, 2005. 102(20): 7227–32.PubMedCrossRefGoogle Scholar
  49. 49.
    Haines, J.L., M.A. Hauser, S. Schmidt, W.K. Scott, L.M. Olson, P. Gallins, K.L. Spencer, S.Y. Kwan, M. Noureddine, J.R. Gilbert, N. Schnetz-Boutaud, A. Agarwal, E.A. Postel, and M.A. Pericak-Vance, Complement factor H variant increases the risk of age-related macular degeneration. Science, 2005. 308(5720): 419–21.PubMedCrossRefGoogle Scholar
  50. 50.
    Halilagic, A., V. Ribes, N.B. Ghyselinck, M.H. Zile, P. Dolle, and M. Studer, Retinoids control anterior and dorsal properties in the developing forebrain. Dev Biol, 2007. 303(1): 362–75.PubMedCrossRefGoogle Scholar
  51. 51.
    Hartong, D.T., E.L. Berson, and T.P. Dryja, Retinitis pigmentosa. Lancet, 2006. 368(9549): 1795–809.PubMedCrossRefGoogle Scholar
  52. 52.
    Hever, A.M., K.A. Williamson, and V. van Heyningen, Developmental malformations of the eye: the role of PAX6, SOX2 and OTX2. Clin Genet, 2006. 69(6): 459–70.PubMedCrossRefGoogle Scholar
  53. 53.
    Hirano, M., A. Yamamoto, N. Yoshimura, T. Tokunaga, T. Motohashi, K. Ishizaki, H. Yoshida, K. Okazaki, H. Yamazaki, S. Hayashi, and T. Kunisada, Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells. Dev Dyn, 2003. 228(4): 664–71.PubMedCrossRefGoogle Scholar
  54. 54.
    Hollyfield, J.G., R.G. Salomon, and J.W. Crabb, Proteomic approaches to understanding age-related macular degeneration. Adv Exp Med Biol, 2003. 533: 83–9.PubMedGoogle Scholar
  55. 55.
    Horsford, D.J., M.T. Nguyen, G.C. Sellar, R. Kothary, H. Arnheiter, and R.R. McInnes, Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development, 2005. 132(1): 177–87.PubMedCrossRefGoogle Scholar
  56. 56.
    Ikeda, H., F. Osakada, K. Watanabe, K. Mizuseki, T. Haraguchi, H. Miyoshi, D. Kamiya, Y. Honda, N. Sasai, N. Yoshimura, M. Takahashi, and Y. Sasai, Generation of Rx + /Pax6 + neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci U S A, 2005. 102(32): 11331–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Jin, E.J., L.W. Burrus, and C.A. Erickson, The expression patterns of Wnts and their antagonists during avian eye development. Mech Dev, 2002. 116(1–2): 173–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Johnson, L.V., S. Ozaki, M.K. Staples, P.A. Erickson, and D.H. Anderson, A potential role for immune complex pathogenesis in drusen formation. Exp Eye Res, 2000. 70(4): 441–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Johnson, L.V., W.P. Leitner, M.K. Staples, and D.H. Anderson, Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res, 2001. 73(6): 887–96.PubMedCrossRefGoogle Scholar
  60. 60.
    Johnson, P.T., G.P. Lewis, K.C. Talaga, M.N. Brown, P.J. Kappel, S.K. Fisher, D.H. Anderson, and L.V. Johnson, Drusen-associated degeneration in the retina. Invest Ophthalmol Vis Sci, 2003. 44(10): 4481–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Kawasaki, H., H. Suemori, K. Mizuseki, K. Watanabe, F. Urano, H. Ichinose, M. Haruta, M. Takahashi, K. Yoshikawa, S. Nishikawa, N. Nakatsuji, and Y. Sasai, Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci U S A, 2002. 99(3): 1580–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Killingsworth, M.C., J.P. Sarks, and S.H. Sarks, Macrophages related to Bruch’s membrane in age-related macular degeneration. Eye, 1990. 4 (Pt 4): 613–21.PubMedGoogle Scholar
  63. 63.
    Kim, H.S., J. Shin, S.H. Kim, H.S. Chun, J.D. Kim, Y.S. Kim, M.J. Kim, M. Rhee, S.Y. Yeo, and T.L. Huh, Eye field requires the function of Sfrp1 as a Wnt antagonist. Neurosci Lett, 2007. 414(1): 26–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Kiselyov, A.S., Targeting the hedgehog signaling pathway with small molecules. Anticancer Agents Med Chem, 2006. 6(5): 445–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Klein, R.J., C. Zeiss, E.Y. Chew, J.Y. Tsai, R.S. Sackler, C. Haynes, A.K. Henning, J.P. SanGiovanni, S.M. Mane, S.T. Mayne, M.B. Bracken, F.L. Ferris, J. Ott, C. Barnstable, and J. Hoh, Complement factor H polymorphism in age-related macular degeneration. Science, 2005. 308(5720): 385–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Klimanskaya, I., J. Hipp, K.A. Rezai, M. West, A. Atala, and R. Lanza, Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells, 2004. 6(3): 217–45.PubMedGoogle Scholar
  67. 67.
    Klimanskaya, I., Retinal pigment epithelium. Methods Enzymol, 2006. 418: 169–94.PubMedCrossRefGoogle Scholar
  68. 68.
    Kobayashi, D., M. Kobayashi, K. Matsumoto, T. Ogura, M. Nakafuku, and K. Shimamura, Early subdivisions in the neural plate define distinct competence for inductive signals. Development, 2002. 129(1): 83–93.PubMedGoogle Scholar
  69. 69.
    Koenekoop, R.K., The gene for Stargardt disease, ABCA4, is a major retinal gene: a mini-review. Ophthalmic Genet, 2003. 24(2): 75–80.PubMedCrossRefGoogle Scholar
  70. 70.
    Kozmik, Z., Pax genes in eye development and evolution. Curr Opin Genet Dev, 2005. 15(4): 430–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Kumar, J.P. and K. Moses, Eye specification in Drosophila: perspectives and implications. Semin Cell Dev Biol, 2001. 12(6): 469–74.PubMedCrossRefGoogle Scholar
  72. 72.
    Kumar, J.P. and K. Moses, EGF receptor and Notch signaling act upstream of Eyeless/Pax6 to control eye specification. Cell, 2001. 104(5): 687–97.PubMedCrossRefGoogle Scholar
  73. 73.
    Lagutin, O.V., C.C. Zhu, D. Kobayashi, J. Topczewski, K. Shimamura, L. Puelles, H.R. Russell, P.J. McKinnon, L. Solnica-Krezel, and G. Oliver, Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev, 2003. 17(3): 368–79.PubMedCrossRefGoogle Scholar
  74. 74.
    Lamba, D.A., M.O. Karl, C.B. Ware, and T.A. Reh, Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A, 2006. 103(34): 12769–74.PubMedCrossRefGoogle Scholar
  75. 75.
    Lee, C.S., N.R. May, and C.M. Fan, Transdifferentiation of the ventral retinal pigmented epithelium to neural retina in the growth arrest specific gene 1 mutant. Dev Biol, 2001. 236(1): 17–29.PubMedCrossRefGoogle Scholar
  76. 76.
    Lee, H.S., Y.S. Bong, K.B. Moore, K. Soria, S.A. Moody, and I.O. Daar, Dishevelled mediates ephrinB1 signalling in the eye field through the planar cell polarity pathway. Nat Cell Biol, 2006. 8(1): 55–63.PubMedCrossRefGoogle Scholar
  77. 77.
    Li, H., C. Tierney, L. Wen, J.Y. Wu, and Y. Rao, A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate. Development, 1997. 124(3): 603–15.PubMedGoogle Scholar
  78. 78.
    Li, Y., P. Atmaca-Sonmez, C.L. Schanie, S.T. Ildstad, H.J. Kaplan, and V. Enzmann, Endogenous bone marrow derived cells express retinal pigment epithelium cell markers and migrate to focal areas of RPE damage. Invest Ophthalmol Vis Sci, 2007. 48(9): 4321–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Lin, H. and D.O. Clegg, Integrin alphavbeta5 participates in the binding of photoreceptor rod outer segments during phagocytosis by cultured human retinal pigment epithelium. Invest Ophthalmol Vis Sci, 1998. 39(9): 1703–12.PubMedGoogle Scholar
  80. 80.
    Liu, H., O. Mohamed, D. Dufort, and V.A. Wallace, Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina. Dev Dyn, 2003. 227(3): 323–34.PubMedCrossRefGoogle Scholar
  81. 81.
    Loeffler, K.U. and N.J. Mangini, Immunolocalization of ubiquitin and related enzymes in human retina and retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol, 1997. 235(4): 248–54.PubMedCrossRefGoogle Scholar
  82. 82.
    Loffler, K.U., D.P. Edward, and M.O. Tso, Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina. Invest Ophthalmol Vis Sci, 1995. 36(1): 24–31.PubMedGoogle Scholar
  83. 83.
    Lopez-Rios, J., K. Tessmar, F. Loosli, J. Wittbrodt, and P. Bovolenta, Six3 and Six6 activity is modulated by members of the groucho family. Development, 2003. 130(1): 185–95.PubMedCrossRefGoogle Scholar
  84. 84.
    Lund, R.D., S. Wang, I. Klimanskaya, T. Holmes, R. Ramos-Kelsey, B. Lu, S. Girman, N. Bischoff, Y. Sauve, and R. Lanza, Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells, 2006. 8(3): 189–99.PubMedCrossRefGoogle Scholar
  85. 85.
    Maden, M., A. Blentic, S. Reijntjes, S. Seguin, E. Gale, and A. Graham, Retinoic acid is required for specification of the ventral eye field and for Rathke’s pouch in the avian embryo. Int J Dev Biol, 2007. 51(3): 191–200.PubMedCrossRefGoogle Scholar
  86. 86.
    Marmorstein, A.D., S.C. Finnemann, V.L. Bonilha, and E. Rodriguez-Boulan, Morphogenesis of the retinal pigment epithelium: toward understanding retinal degenerative diseases. Ann N Y Acad Sci, 1998. 857: 1–12.PubMedCrossRefGoogle Scholar
  87. 87.
    Martinez-Morales, J.R., V. Dolez, I. Rodrigo, R. Zaccarini, L. Leconte, P. Bovolenta, and S. Saule, OTX2 activates the molecular network underlying retina pigment epithelium differentiation. J Biol Chem, 2003. 278(24): 21721–31.PubMedCrossRefGoogle Scholar
  88. 88.
    Martinez-Morales, J.R., I. Rodrigo, and P. Bovolenta, Eye development: a view from the retina pigmented epithelium. Bioessays, 2004. 26(7): 766–77.PubMedCrossRefGoogle Scholar
  89. 89.
    Mathers, P.H., A. Grinberg, K.A. Mahon, and M. Jamrich, The Rx homeobox gene is essential for vertebrate eye development. Nature, 1997. 387(6633): 603–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Matt, N., V. Dupe, J.M. Garnier, C. Dennefeld, P. Chambon, M. Mark, and N.B. Ghyselinck, Retinoic acid-dependent eye morphogenesis is orchestrated by neural crest cells. Development, 2005. 132(21): 4789–800.PubMedCrossRefGoogle Scholar
  91. 91.
    Maurus, D., C. Heligon, A. Burger-Schwarzler, A.W. Brandli, and M. Kuhl, Noncanonical Wnt-4 signaling and EAF2 are required for eye development in Xenopus laevis. Embo J, 2005. 24(6): 1181–91.PubMedCrossRefGoogle Scholar
  92. 92.
    Mochii, M., Y. Mazaki, N. Mizuno, H. Hayashi, and G. Eguchi, Role of Mitf in differentiation and transdifferentiation of chicken pigmented epithelial cell. Dev Biol, 1998. 193(1): 47–62.PubMedCrossRefGoogle Scholar
  93. 93.
    Molotkov, A., N. Molotkova, and G. Duester, Retinoic acid guides eye morphogenetic movements via paracrine signaling but is unnecessary for retinal dorsoventral patterning. Development, 2006. 133(10): 1901–10.PubMedCrossRefGoogle Scholar
  94. 94.
    Muller, F., H. Rohrer, and A. Vogel-Hopker, Bone morphogenetic proteins specify the retinal pigment epithelium in the chick embryo. Development, 2007. 134(19): 3483–93.PubMedCrossRefGoogle Scholar
  95. 95.
    Mullins, R.F., L.V. Johnson, D.H. Anderson, and G.S. Hageman, Characterization of drusen-associated glycoconjugates. Ophthalmology, 1997. 104(2): 288–94.PubMedGoogle Scholar
  96. 96.
    Nakayama, A., M.T. Nguyen, C.C. Chen, K. Opdecamp, C.A. Hodgkinson, and H. Arnheiter, Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mech Dev, 1998. 70(1–2): 155–66.PubMedCrossRefGoogle Scholar
  97. 97.
    Newsome, D.A., A.T. Hewitt, W. Huh, P.G. Robey, and J.R. Hassell, Detection of specific extracellular matrix molecules in drusen, Bruch’s membrane, and ciliary body. Am J Ophthalmol, 1987. 104(4): 373–81.PubMedGoogle Scholar
  98. 98.
    O’Rahilly, R., The prenatal development of the human eye. Exp Eye Res, 1975. 21(2): 93–112.PubMedCrossRefGoogle Scholar
  99. 99.
    Oldham, S. and E. Hafen, Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol, 2003. 13(2): 79–85.PubMedCrossRefGoogle Scholar
  100. 100.
    Onuma, Y., S. Takahashi, M. Asashima, S. Kurata, and W.J. Gehring, Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc Natl Acad Sci U S A, 2002. 99(4): 2020–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Ooto, S., M. Haruta, Y. Honda, H. Kawasaki, Y. Sasai, and M. Takahashi, Induction of the differentiation of lentoids from primate embryonic stem cells. Invest Ophthalmol Vis Sci, 2003. 44(6): 2689–93.PubMedCrossRefGoogle Scholar
  102. 102.
    Pauleikhoff, D., S. Zuels, G.S. Sheraidah, J. Marshall, A. Wessing, and A.C. Bird, Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology, 1992. 99(10): 1548–53.PubMedGoogle Scholar
  103. 103.
    Penfold, P.L., M.C. Killingsworth, and S.H. Sarks, Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol, 1985. 223(2): 69–76.PubMedCrossRefGoogle Scholar
  104. 104.
    Penfold, P.L., M.C. Madigan, M.C. Gillies, and J.M. Provis, Immunological and aetiological aspects of macular degeneration. Prog Retin Eye Res, 2001. 20(3): 385–414.PubMedCrossRefGoogle Scholar
  105. 105.
    Peng, G. and M. Westerfield, Lhx5 promotes forebrain development and activates transcription of secreted Wnt antagonists. Development, 2006. 133(16): 3191–200.PubMedCrossRefGoogle Scholar
  106. 106.
    Pera, E.M., O. Wessely, S.Y. Li, and E.M. De Robertis, Neural and head induction by insulin-like growth factor signals. Dev Cell, 2001. 1(5): 655–65.PubMedCrossRefGoogle Scholar
  107. 107.
    Pera, E.M., A. Ikeda, E. Eivers, and E.M. De Robertis, Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev, 2003. 17(24): 3023–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Perron, M., S. Boy, M.A. Amato, A. Viczian, K. Koebernick, T. Pieler, and W.A. Harris, A novel function for Hedgehog signalling in retinal pigment epithelium differentiation. Development, 2003. 130(8): 1565–77.PubMedCrossRefGoogle Scholar
  109. 109.
    Planque, N., L. Leconte, F.M. Coquelle, P. Martin, and S. Saule, Specific Pax-6/microphthalmia transcription factor interactions involve their DNA-binding domains and inhibit transcriptional properties of both proteins. J Biol Chem, 2001. 276(31): 29330–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Porter, F.D., J. Drago, Y. Xu, S.S. Cheema, C. Wassif, S.P. Huang, E. Lee, A. Grinberg, J.S. Massalas, D. Bodine, F. Alt, and H. Westphal, Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development, 1997. 124(15): 2935–44.PubMedGoogle Scholar
  111. 111.
    Ribes, V., Z. Wang, P. Dolle, and K. Niederreither, Retinaldehyde dehydrogenase 2 (RALDH2)-mediated retinoic acid synthesis regulates early mouse embryonic forebrain development by controlling FGF and sonic hedgehog signaling. Development, 2006. 133(2): 351–61.PubMedCrossRefGoogle Scholar
  112. 112.
    Rodrigues, E.B., Inflammation in dry age-related macular degeneration. Ophthalmologica, 2007. 221(3): 143–52.PubMedCrossRefGoogle Scholar
  113. 113.
    Rojas-Munoz, A., R. Dahm, and C. Nusslein-Volhard, chokh/rx3 specifies the retinal pigment epithelium fate independently of eye morphogenesis. Dev Biol, 2005. 288(2): 348–62.PubMedCrossRefGoogle Scholar
  114. 114.
    Rorick, A.M., W. Mei, N.L. Liette, C. Phiel, H.M. El-Hodiri, and J. Yang, PP2A:B56epsilon is required for eye induction and eye field separation. Dev Biol, 2007. 302(2): 477–93.PubMedCrossRefGoogle Scholar
  115. 115.
    Sarks, J.P., S.H. Sarks, and M.C. Killingsworth, Evolution of geographic atrophy of the retinal pigment epithelium. Eye, 1988. 2 (Pt 5): 552–77.PubMedGoogle Scholar
  116. 116.
    Seddon, J.M., U.A. Ajani, and B.D. Mitchell, Familial aggregation of age-related maculopathy. Am J Ophthalmol, 1997. 123(2): 199–206.PubMedGoogle Scholar
  117. 117.
    Smith, W., J. Assink, R. Klein, P. Mitchell, C.C. Klaver, B.E. Klein, A. Hofman, S. Jensen, J.J. Wang, and P.T. de Jong, Risk factors for age-related macular degeneration: pooled findings from three continents. Ophthalmology, 2001. 108(4): 697–704.PubMedCrossRefGoogle Scholar
  118. 118.
    Sparrow, J.R., B. Cai, N. Fishkin, Y.P. Jang, S. Krane, H.R. Vollmer, J. Zhou, and K. Nakanishi, A2E, a fluorophore of RPE lipofuscin: can it cause RPE degeneration? Adv Exp Med Biol, 2003. 533: 205–11.PubMedGoogle Scholar
  119. 119.
    Spieler, D., N. Baumer, J. Stebler, M. Koprunner, M. Reichman-Fried, U. Teichmann, E. Raz, M. Kessel, and L. Wittler, Involvement of Pax6 and Otx2 in the forebrain-specific regulation of the vertebrate homeobox gene ANF/Hesx1. Dev Biol, 2004. 269(2): 567–79.PubMedCrossRefGoogle Scholar
  120. 120.
    Stern, C.D., Neural induction: 10 years on since the ‘default model’. Curr Opin Cell Biol, 2006. 18(6): 692–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Stone, E.M., T.A. Braun, S.R. Russell, M.H. Kuehn, A.J. Lotery, P.A. Moore, C.G. Eastman, T.L. Casavant, and V.C. Sheffield, Missense variations in the fibulin 5 gene and age-related macular degeneration. N Engl J Med, 2004. 351(4): 346–53.PubMedCrossRefGoogle Scholar
  122. 122.
    Strauss, O., The retinal pigment epithelium in visual function. Physiol Rev, 2005. 85(3): 845–81.PubMedCrossRefGoogle Scholar
  123. 123.
    Takabatake, Y., T. Takabatake, S. Sasagawa, and K. Takeshima, Conserved expression control and shared activity between cognate T-box genes Tbx2 and Tbx3 in connection with Sonic hedgehog signaling during Xenopus eye development. Dev Growth Differ, 2002. 44(4): 257–71.PubMedCrossRefGoogle Scholar
  124. 124.
    Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): 861–72.PubMedCrossRefGoogle Scholar
  125. 125.
    Takeda, K., K. Yasumoto, R. Takada, S. Takada, K. Watanabe, T. Udono, H. Saito, K. Takahashi, and S. Shibahara, Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J Biol Chem, 2000. 275(19): 14013–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Takeda, K., S. Yokoyama, K. Yasumoto, H. Saito, T. Udono, K. Takahashi, and S. Shibahara, OTX2 regulates expression of DOPAchrome tautomerase in human retinal pigment epithelium. Biochem Biophys Res Commun, 2003. 300(4): 908–14.PubMedCrossRefGoogle Scholar
  127. 127.
    Terada, K., A. Kitayama, T. Kanamoto, N. Ueno, and T. Furukawa, Nucleosome regulator Xhmgb3 is required for cell proliferation of the eye and brain as a downstream target of Xenopus rax/Rx1. Dev Biol, 2006. 291(2): 398–412.PubMedCrossRefGoogle Scholar
  128. 128.
    Terman, A., B. Gustafsson, and U.T. Brunk, Autophagy, organelles and ageing. J Pathol, 2007. 211(2): 134–43.PubMedCrossRefGoogle Scholar
  129. 129.
    Tuo, J., C.M. Bojanowski, and C.C. Chan, Genetic factors of age-related macular degeneration. Prog Retin Eye Res, 2004. 23(2): 229–49.PubMedCrossRefGoogle Scholar
  130. 130.
    Ueno, M., M. Matsumura, K. Watanabe, T. Nakamura, F. Osakada, M. Takahashi, H. Kawasaki, S. Kinoshita, and Y. Sasai, Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix. Proc Natl Acad Sci U S A, 2006. 103(25): 9554–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Vugler, A., J. Lawrence, J. Walsh, A. Carr, C. Gias, M. Semo, A. Ahmado, L. da Cruz, P. Andrews, and P. Coffey, Embryonic stem cells and retinal repair. Mech Dev, 2007. 124(11–12): 807–29.PubMedCrossRefGoogle Scholar
  132. 132.
    Wilson, S.W. and C. Houart, Early steps in the development of the forebrain. Dev Cell, 2004. 6(2): 167–81.PubMedCrossRefGoogle Scholar
  133. 133.
    Wong, K., Y. Peng, H.F. Kung, and M.L. He, Retina dorsal/ventral patterning by Xenopus TBX3. Biochem Biophys Res Commun, 2002. 290(2): 737–42.PubMedCrossRefGoogle Scholar
  134. 134.
    Wright, A., B. Charlesworth, I. Rudan, A. Carothers, and H. Campbell, A polygenic basis for late-onset disease. Trends Genet, 2003. 19(2): 97–106.PubMedCrossRefGoogle Scholar
  135. 135.
    Wu, J., M. O’Donnell, A.D. Gitler, and P.S. Klein, Kermit 2/XGIPC, an IGF1 receptor interacting protein, is required for IGF signaling in Xenopus eye development. Development, 2006. 133(18): 3651–60.PubMedCrossRefGoogle Scholar
  136. 136.
    Yang, X.J., Roles of cell-extrinsic growth factors in vertebrate eye pattern formation and retinogenesis. Semin Cell Dev Biol, 2004. 15(1): 91–103.PubMedCrossRefGoogle Scholar
  137. 137.
    Yasumoto, K., K. Takeda, H. Saito, K. Watanabe, K. Takahashi, and S. Shibahara, Microphthalmia-associated transcription factor interacts with LEF-1, a mediator of Wnt signaling. Embo J, 2002. 21(11): 2703–14.PubMedCrossRefGoogle Scholar
  138. 138.
    Yu, J., M.A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J.L. Frane, S. Tian, J. Nie, G.A. Jonsdottir, V. Ruotti, R. Stewart, Slukvin, II, and J.A. Thomson, Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): 1917–20.PubMedCrossRefGoogle Scholar
  139. 139.
    Zaghloul, N.A., B. Yan, and S.A. Moody, Step-wise specification of retinal stem cells during normal embryogenesis. Biol Cell, 2005. 97(5): 321–37.PubMedCrossRefGoogle Scholar
  140. 140.
    Zaghloul, N.A. and S.A. Moody, Alterations of rx1 and pax6 expression levels at neural plate stages differentially affect the production of retinal cell types and maintenance of retinal stem cell qualities. Dev Biol, 2007. 306(1): 222–40.PubMedCrossRefGoogle Scholar
  141. 141.
    Zhang, X.M. and X.J. Yang, Temporal and spatial effects of Sonic hedgehog signaling in chick eye morphogenesis. Dev Biol, 2001. 233(2): 271–90.PubMedCrossRefGoogle Scholar
  142. 142.
    Zuber, M.E., G. Gestri, A.S. Viczian, G. Barsacchi, and W.A. Harris, Specification of the vertebrate eye by a network of eye field transcription factors. Development, 2003. 130(21): 5155–67.PubMedCrossRefGoogle Scholar
  143. 143.
    Stroeva, O.G. and V.I. Mitashov, Retinal pigment epithelium: proliferation and differentiation during development and regeneration. Int Rev Cytol, 1983. 83: p. 221–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Dennis O. Clegg
    • 1
    Email author
  • David Buchholz
    • 1
  • Sherry Hikita
    • 1
  • Teisha Rowland
    • 1
  • Qirui Hu
    • 1
  • Lincoln V. Johnson
    • 1
  1. 1.Center for Stem Cell Biology and Engineering, Neuroscience Research InstituteUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations