Treaty Monitoring

  • Mort Canty
  • Bhupendra Jasani
  • Iris Lingenfelder
  • Allan A. Nielsen
  • Irmgard Niemeyer
  • Sven Nussbaum
  • Jörg Schlittenhardt
  • Michal Shimoni
  • Henning Skriver

Abstract

This paper introduces several unique image processing and interpretation techniques that can be used to monitor and verify arms control treaties. It is argued in the paper that not only has there been great improvement in the spatial and temporal resolution of commercial satellite imagery providing the international community with the means to monitor arms control treaties, but also, unlike aerial observations, it is non-intrusive. The paper first looks at the development of a “key” that describes research and power reactors and conventional power plants. Secondly, with the aid of this and digital image processing, it is shown how the verification and monitoring of the NPT could be carried out. One of the image processing techniques, the multi-variate alteration detection (MAD) concept is introduced, which has been developed for the purposes of multi-spectral change detection. This is then followed by descriptions of several other imaging techniques, including: detection of changes using synthetic aperture radar (SAR) images; automated object-based image analysis; and analysis of hyper-spectral imagery. Finally, the potential use of commercial satellite based digital images and advanced image processing techniques could be used for monitoring and verifying the Comprehensive Nuclear Test Ban Treaty (CTBT).

Keywords

Treaty Monitoring satellite imagery analysis multivariate alteration detection (MAD) change detection verification NPT CTBT hyperspectral imagery digital image processing 

References

  1. Aschbacher, J., 2002. Monitoring environmental treaties using earth observation. In: Findlay, T. and Meier, O. (ed.), 2002. Verification Yearbook 2002. VERTIC, London, 171–185.Google Scholar
  2. Canty, M. J., 2006. Image Analysis, Classification and Change Detection in Remote Sensing, with Algorithms for ENVI/IDL. Taylor & Francis, London.Google Scholar
  3. Canty, M. J. and Nielsen, A. A., 2006. Visualization and unsupervised classification of changes in multispectral satellite imagery. International Journal of Remote Sensing, 27(18), 3961–3975.CrossRefGoogle Scholar
  4. Canty, M. J. and Schlittenhardt, J., 2001. Satellite data used to locate site of 1998 Indian nuclear test. Eos, Transactions, American Geophysical Union, 82(3), 25–29.CrossRefGoogle Scholar
  5. Canty, M. J., Nielsen, A. A., and Schmidt, M., 2004. Automatic radiometric normalization of multitemporal satellite imagery. Remote Sensing of Environment, 91(3–4), 441–445.CrossRefGoogle Scholar
  6. Canty, M. J., Nielsen, A. A., and Schlittenhardt, J., 2005. Sensitive change detection for remote monitoring of nuclear treaties. Proceedings of the 31st International Symposium on Remote Sensing of Environment, Global Monitoring for Sustainability and Security, St. Petersburg, Russia, 20–24 June 2005.Google Scholar
  7. Cooley, J. N., 2006. International atomic energy agency safeguards under the treaty on the non-proliferation of nuclear weapons: challenges in implementation. In: Avenhaus, R., Kyriakopoulos, N., Richard, M., and Stein, G. (ed.), Verifying Treaty Compliance. Limiting Weapons of Mass Destruction and Monitoring Kyoto Protocol Provisions. Springer, Berlin, 61–76.Google Scholar
  8. Jasani, B., 1989. Monitoring the greenhouse effect from space. Space Policy, 5(2), 94–98.CrossRefGoogle Scholar
  9. Jasani, B., 1990. Commercial observation satellites and verification. In: Krepon, M. et al. (ed.), Commercial Observation Satellites and International Securit. MacMillan, Basingstoke, England, 142–150.Google Scholar
  10. Jasani, B. and Stein, G. (ed.), 2002. Commercial Satellite Imagery. A Tactic in Nuclear Weapon Deterrence. Springer, Berlin.Google Scholar
  11. Jasani, B., 1994. Verification of a Comprehensive Test Ban Treaty from Space: A Preliminary Study. Research paper No: 32, UNIDIR, Geneva.Google Scholar
  12. Mallat, S. G., 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693.CrossRefGoogle Scholar
  13. Neville, R. A., Staenz, K., Lévesque, J., Nadeau, C., Truong, Q. S., and Borstad, G. A., 2001. Hyperspectral analysis of imagery of a uranium mine site. Proceedings of the ISSSR Symposium, Québec City.Google Scholar
  14. Nielsen, A. A., 2007. The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Transactions on Image Processing, 16(2), 463–478.CrossRefGoogle Scholar
  15. Nielsen, A. A., Conradsen, K., and Simpson, J. J., 1998. Multivariate alteration detection (MAD) and MAF processing in multispectral, bitemporal image data: New approaches to change detection studies. Remote Sensing of Environment, 64, 1–19.CrossRefGoogle Scholar
  16. Nussbaum, S., Niemeyer, I., and Canty, M. J., 2005. Feature recognition in the context of automated object-oriented analysis of remote sensing data monitoring the Iranian nuclear sites. Proceedings of SPIE's Europe Symposium Optics and Photonics for Defense and Security 2005, Bruges, SPIE Vol. 5988-6.Google Scholar
  17. Poucet, A., 2006. Arms control and non-proliferation treaties: an ontology of concepts and characteristics. In: Avenhaus, R., Kyriakopoulos, N., Richard, M., and Stein, G. (ed.), Verifying Treaty Compliance. Limiting Weapons of Mass Destruction and Monitoring Kyoto Protocol Provisions. Springer, Berlin, 41–60.Google Scholar
  18. Redner, R. A. and Walker, H. F., 1984. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26(2), 195–239.CrossRefGoogle Scholar
  19. UN document A/AC.206/14, 6 August 1981.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Mort Canty
    • 1
  • Bhupendra Jasani
    • 2
  • Iris Lingenfelder
    • 3
  • Allan A. Nielsen
    • 4
  • Irmgard Niemeyer
    • 5
  • Sven Nussbaum
    • 1
  • Jörg Schlittenhardt
    • 6
  • Michal Shimoni
    • 7
  • Henning Skriver
    • 4
  1. 1.Forschungszentrum Jülich GmbHGermany
  2. 2.Kings College LondonUK
  3. 3.Definiens AGGermany
  4. 4.Technical University of DenmarkDenmark
  5. 5.TU Bergakademie FreibergGermany
  6. 6.Federal Institute for Geosciences and Natural Resources (BGR)Germany
  7. 7.RMA Signal and Image CentreBelgium

Personalised recommendations