Advertisement

The Truth Schema and the Liar

  • Stephen Read
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 8)

Since Tarski published his study of the concept of truth in the 1930s, it has been orthodox practice to suppose that every instance of the T-schema is true. However, some instances of the schema are false. These include the paradoxical instances exemplified by the Liar sentence. It is shown that a better schema allows a uniform treatment of truth in which the semantic paradoxes turn out to be simply false.

Keywords

Truth Liar paradox Correspondence platitude Tarski Bradwardine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    [1] R. Carnap, Intellectual autobiography, in P. Schilpp, The Philosophy of Rudolf Carnap. La Salle, IL: Open Court, 1963, 3–84.Google Scholar
  2. 2.
    [2] J.A. Coffa, The Semantic Tradition from Kant to Carnap: To the Vienna Station. Cambridge: Cambridge University Press, 1991.Google Scholar
  3. 3.
    A. Tarski, The concept of truth in formalized languages, tr. in [22], 152–278.Google Scholar
  4. 4.
    [4] D. Davidson, True to the facts, Journal of Philosophy 66, 1969, 304–323, reprinted in his Inquiries into Truth and Interpretation. Oxford: Clarendon Press, 1984, 37–54.CrossRefGoogle Scholar
  5. 5.
    [5] J. Hintikka, A counterexample to Tarski-type truth-definitions as applied to natural languages, Philosophia 5, 1975, 207–212.CrossRefGoogle Scholar
  6. 6.
    A. Tarski, The establishment of a scientific semantics, tr. in [22], 401–408.Google Scholar
  7. 7.
    [7] P. Horwich, Truth, second edition. Oxford: Clarendon Press, 1998.Google Scholar
  8. 8.
    [8] P. Horwich, In the truth domain, Times Literary Supplement no. 4711 (July 16, 1993), 28.Google Scholar
  9. 9.
    [9] A. Yaqūb, The Liar Speaks the Truth. Oxford: Oxford University Press, 1993.Google Scholar
  10. 10.
    [10] C.J.G. Wright, Truth and Objectivity. Cambridge, MA: Harvard University Press, 1992.Google Scholar
  11. 11.
    [11] J. Dodd, Is truth supervenient on being?, Proceedings of the Aristotelian Society 102, 2001–2002, 69–86.CrossRefGoogle Scholar
  12. 12.
    L. Wittgenstein, Tractatus Logico-Philosophicus, tr. D. Pears and B. McGuinness. London: Routledge and Kegan Paul, 1961.Google Scholar
  13. 13.
    [13] A. Tarski, Truth and proof, Scientific American 220, no. 6, June 1969, 63–77.CrossRefGoogle Scholar
  14. 14.
    [14] A. Church, A formulation of the simple theory of types, Journal of Symbolic Logic 5, 1940, 56–68.CrossRefGoogle Scholar
  15. 15.
    [15] S. Kripke, Outline of the theory of truth, Journal of Philosophy 72, 1975, 690–716.CrossRefGoogle Scholar
  16. 16.
    Insolubilia, in M.-L. Roure, La problématique des propositions in-solubles au XIIIe siècle et au début du XIVe, suivie de l'édition des traités de W. Shyreswood, W. Burleigh et Th. Bradwardine, Archives d'Histoire Doctrinale et Littéraire du Moyen Age 37, 205–326.Google Scholar
  17. 17.
    [17] E.A. Moody, Truth and Consequence in Medieval Logic. New York: Greenwood Press, 1953.Google Scholar
  18. 18.
    [18] A. Prior, Some problems of self-reference in John Buridan, Proceedings of the British Academy 48, 1962, 281–296.Google Scholar
  19. 19.
    [19] J. Buridan, Summulae de Dialectica, New Haven, CT: Yale University Press, 2001.Google Scholar
  20. 20.
    Albert of Saxony, Perutilis Logica, Venice 1522, repr. Olms, 1974.Google Scholar
  21. 21.
    [21] S. Read, The liar paradox from John Buridan back to Thomas Bradwardine, Vivarium 40, 2002, 189–218.CrossRefGoogle Scholar
  22. 22.
    [22] A. Tarski, Logic, Semantics, Metamathematics, second edition, J. Corcoran, tr. J. Woodger (eds.). Indianapolis: Hackett, 1983.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Stephen Read
    • 1
  1. 1.Department of Logic and MetaphysicsUniversity of St. AndrewsScotlandUK

Personalised recommendations