Catalysis in Ionic Liquids: A Key to Sustainable Chemistry

  • Claudio Trombini
  • Marco Lombardo
Conference paper
Part of the NATO Science for Peace and Security Series book series (NAPSC)

Abstract

a key to the development of innovative sustainable technology platforms is represented by the combination of different green strategies. The access to new synthetic processes deriving from the merging of heterogeneous catalysis with intrinsically safer solvents such as ionic liquids, and possibly using flow through techniques, is discussed in this chapter. Examples taken from the very recent literature are analysed and classified according to four different strategic approaches to generate catalysis in ionic liquid media; (i) the ionic liquid is the solvent for the catalytic reaction, (ii) the ionic liquid is both the solvent and the catalyst (or pre-catalyst), (iii) the ionic liquid is simply used as the catalyst, easily removable from the reaction mixture, (iv) the ionic liquid is supported in the form of a thin layer on a solid support. In the last case, the solid material is exploitable in fixed bed reactors, thus rendering possible the application of continuous flow technologies.

Keywords

Heterogeneous catalysis biphasic catalysis ionic liquids task-specific ionic liquids supported ionic liquid phases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    (a) H.-J. Federsel, Nature Rev., 4, 685-697 (2005). (b) A. Hashmi, K. Stephen, Ang. Chem. Int. Ed., 44, 6990-6993 (2005). (c) R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley-Interscience, New York, 1994. (d) Catalytic Asymmetric Synthesis, I. Ojima, Ed, 2nd ed. Wiley-VCH, New York, 2000. (e) Comprehensive Asymmetric Catalysis, E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Eds., Vols. I-III, Springer, Berlin, 1999. (f) Lewis Acids in Organic Synthesis, H. Yamamoto, Ed, Wiley-VCH, Weinheim, 2001.Google Scholar
  2. 2.
    (a) K. Ding, Z. Wang, X. Wang, Y. Liang, X. Wang, Chem. Eur. J., 12, 5188-5197 (2006). (b) F. M. Bautista, V. Caballero, J. M. Campelo, D. Luna, J. M. Marinas, A. A. Romero, I. Romero, I. Serrano, A. Llobet, Top. Catal., 40, 193-205 (2006). (c) P. Stephenson, B. Kondor, P. Licence, K. Scovell, S. K. Ross, M. Poliakoff, Adv. Synt. Cat., 348, 1605-1610 (2006). (d) A. S. Kucherenko, M. I. Struchkova, S. G. Zlotin, Sergei G., Eur. J. Org. Chem., 2000-2004 (2006). (e) Chiral Catalyst Immobilization and Recycling, D. E. de Vos, I. F. Vankelecom, P. A. Jacobs, Eds. Wiley-VCH, Weinheim, 2000. (f) C. E. Song, S. Lee, Chem. Rev., (2002) 102, 3495-3524 (2002). (g) Q. Fan, Y. -M. Li, A. S. C. Chan, Chem. Rev., 102, 3385-3466 (2002). (h) D. E. de Vos, M. Dams, B. F. Sels, P. A. Jacobs, Chem. Rev., 102, 3615-3640 (2002).Google Scholar
  3. 3.
    K. Ding, Z. Wang, X. Wang, Y. Liang, X. Wang, Chem. Eur. J., 12, 5188-5197 (2006).CrossRefGoogle Scholar
  4. 4.
    J. H. Clark, Pure Appl. Chem., 73, 103-111 (2001).CrossRefGoogle Scholar
  5. 5.
    Aqueous-Phase Organometallic Catalysis: Concepts and Applications, Cornils, B.; Herrmann, W. A. Eds. Wiley-VCH, Weinheim, 1998.Google Scholar
  6. 6.
    (a) T. Welton, Chem. Rev., 99 , 2071-2083 (1999). (b) Ionic Liquids in Synthesis. P. Wasserscheid and T. Welton, Eds., Wiley-VCH, Weinheim, 2002. c) T. Welton, Coord. Chem. Rev., 248, 2459-2477 (2004).Google Scholar
  7. 7.
    Examples of recent review articles: (a) S. Chowdhury, R. S. Mohan, J. L. Scott, Tetrahedron, 63, 2363-2389 (2007); (b) P. Tundo, A. Perosa, Chem. Soc. Rev., 36, 532- 550 (2007); (c) Z. Fei, T. J. Geldbach, D. Zhao, P. J. Dyson, Chem. Eur. J., 12, 2122- 2130 (2006). (d) D. R. MacFarlane, J. M. Pringle, K. M. Johansson, S. A. Forsyth, M. Forsyth, Chem. Commun., 1905-1917 (2006). (e) J. Muzart, Adv. Synth. Catal., 348, 275-295 (2006). (f) S. -G. Lee, Chem. Commun., 1049-1063 (2006). (g) D. Astruc, F. Lu, J. R. Aranzaes, Angew. Chem. Int. Ed., 44, 7852-7872 (2005). (h) W. Miao, T. H. Chan, Acc. Chem. Res., 39, 897-908 (2006).Google Scholar
  8. 8.
    L. Crowhurst, N. L. Lancaster, J. M. P. Arlandis, T. Welton, J. Am. Chem. Soc., 126, 11549-11555 (2004).CrossRefGoogle Scholar
  9. 9.
    N. L. Lancaster, T. Welton, J. Org. Chem., 69, 5986-5992 (2004).CrossRefGoogle Scholar
  10. 10.
    C. Daguenet, P. J. Dyson, Organometallics, 25, 5811-5816 (2006).CrossRefGoogle Scholar
  11. 11.
    M. J. Earle, S. P. Katdare, K. R. Seddon, Org. Lett., 6, 707-710 (2004).CrossRefGoogle Scholar
  12. 12.
    (a) B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc., 122, 2395-2396 (2000). (b) K. Sakthivel, W. Notz, T. Bui, C. F. Barbas III, J. Am. Chem. Soc., 123, 5260-5267 (2001). (c) A. Cordova, W. Zou, P. Dziedzic, I. Ibrahem, E. Reyes, Y. Xu, Chem. Eur. J., 12, 5383-5397 (2006).Google Scholar
  13. 13.
    T.-P. Loh, L. -C. Feng, H. -Y. Yang, J. -Y. Yang, Tetrahedron Lett., 43, 8741-8743 (2002).CrossRefGoogle Scholar
  14. 14.
    P. Kotrusz, I. Kmentová, B. Gotov, Š. Toma, E. Solčániová, Chem. Commun., 2510-2511 (2002).Google Scholar
  15. 15.
    W. Miao, T. H. Chan, Adv. Synth. Catal., 348, 1711-1718 (2006).CrossRefGoogle Scholar
  16. 16.
    J. N. A. Canongia Lopes, A. A. H. Pádua, J. Phys. Chem. B, 110, 3330-3335 (2006).CrossRefGoogle Scholar
  17. 17.
    M. Lombardo, F. Pasi, E. Srinivasan, C. Trombini, Adv. Synth. Catal., submitted.Google Scholar
  18. 18.
    S. Luo, X. Mi, L. Zhang, S. Liu, H. Xu, J. -P. Cheng, Angew. Chem. Int. Ed., 45, 3093-3097 (2006).CrossRefGoogle Scholar
  19. 19.
    K. Huang, Z. -Z. Huang, X. -L. Li, J. Org. Chem., 71, 8320-8323, (2006).CrossRefGoogle Scholar
  20. 20.
    S. -H. Zhaoa, H. -R. Zhang, L. -H. Feng, Z. -B. Chen, J. Mol.Catal. A: Chem., 258, 251-256 (2006).Google Scholar
  21. 21.
    X. Mi, S. Luo, H. Xu, L. Zhanga, J. -P. Ghenga, Tetrahedron, 62, 2537-2544 (2006).CrossRefGoogle Scholar
  22. 22.
    R. Gausepohl, P. Buskens, J. Kleinen, A. Bruckmann, C. W. Lehmann, J. Klankermayer, W. Leitner, Angew. Chem. Int. Ed., 45, 3689-3692 (2006).CrossRefGoogle Scholar
  23. 23.
    F. Fini, V. Sgarzani, D. Pettersen, R. P. Herrera, L. Bernardi, A. Ricci, Angew. Chem. Int. Ed. Eng., 44, 7975-7978 (2005).CrossRefGoogle Scholar
  24. 24.
    C. Palomo, M. Oiarbide, A. Laso, R. Lopez, J. Am. Chem. Soc., 127, 17622-17623 (2005).CrossRefGoogle Scholar
  25. 25.
    X. Wang, L. Yin, T. Yang, Y. Wang, Tetrahedron: Asymmetry, 18, 108-114 (2007).CrossRefGoogle Scholar
  26. 26.
    S. Sahoo, T. Joseph, S. B. Halligudi, J. Mol. Catal. A: Chem., 244, 179-182 (2006).CrossRefGoogle Scholar
  27. 27.
    A. L. Hansen, T. Skrydstrup, J. Org. Chem., 70, 5997-6003 (2005).CrossRefGoogle Scholar
  28. 28.
    J. Mo, J. Xiao, Angew. Chem. Int. Ed. Eng., 45, 4152-4157 (2006).CrossRefGoogle Scholar
  29. 29.
    Y. Ishii, S. Sakaguchi, T. Iwahama, Adv. Synth. Catal., 343, 393-427 (2001).CrossRefGoogle Scholar
  30. 30.
    S. Koguchi, T. Kitazume, Tetrahedron Lett., 47, 2797-2801 (2006).CrossRefGoogle Scholar
  31. 31.
    T. S. Reger, K. D. Janda, J. Am. Chem. Soc., 122, 6929-6934 (2000).CrossRefGoogle Scholar
  32. 32.
    R. I. Kureshy, N. H. Khan, S. H. R. Abdi, I. Ahmad, S. Singh, R. V. Jasra, J. Catal., 221, 234-240 (2004).CrossRefGoogle Scholar
  33. 33.
    J. A. Boon, J. A. Levisky, J. L. Pflug, J. S. Wilkes, J. Org. Chem., 51, 480-483 (1986).CrossRefGoogle Scholar
  34. 34.
    F. H. Hurley, T. P. Wier, J. Electrochem. Soc., 98, 207-212 (1951).CrossRefGoogle Scholar
  35. 35.
    H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryoung, J. Am. Chem.Soc., 97, 3264-3265 (1975).CrossRefGoogle Scholar
  36. 36.
    V. Ladnak, N. Hofmann, N. Brausch, P. Wasserscheid, Adv. Synth. Catal., 349, 719-726 (2007).CrossRefGoogle Scholar
  37. 37.
    (a) M. J. Earle, K. R. Seddon, C. J. Adams, G. Roberts, Chem. Commun., 2097-2098 (1998). (b) M. H. Valkenberg, C. de Castro, W. F. Holderich, Appl. Catal. A, 215, 185-190 (2001).Google Scholar
  38. 38.
    J. A. Boon, J. A. Levisky, J. L. Pflug, J. S. Wilkes, J. Org. Chem., 51, 480-483 (1986).CrossRefGoogle Scholar
  39. 39.
    P. Wasserscheid and T. Welton Eds., Ionic Liquids in Synthesis, 2nd Edition, WileyVCH, 2007.Google Scholar
  40. 40.
    K. Bica, P. Gaertner, Org. Lett., 8, 733-735 (2006).CrossRefGoogle Scholar
  41. 41.
    J. P. Canal, T. Ramnial, D. A. Dickie, J. A. C. Clyburne, Chem. Commun., 1809-1818 (2006).Google Scholar
  42. 42.
    S. T. Handy, J. Org. Chem., 71, 4659-4662 (2006).CrossRefGoogle Scholar
  43. 43.
    R. Giernoth, D. Bankmann, Tetrahedron Lett., 47, 4293-4296 (2006).CrossRefGoogle Scholar
  44. 44.
    W. A. Herrmann, Angew. Chem. Int. Ed. Eng., 41, 1290-1309 (2002).CrossRefGoogle Scholar
  45. 45.
    L. Xu, W. Chen, J. Xiao, Organometallics, 19, 1123-1127 (2000).CrossRefGoogle Scholar
  46. 46.
    F. McLachlan, C. J. Mathews, P. J. Smith, T. Welton, Organometallics, 22, 5350-5357 (2003).CrossRefGoogle Scholar
  47. 47.
    A. Perosa, P. Tundo, M. Selva, S. Zinovyev, A. Testa, Org. Biomol. Chem., 2, 2249-2252 (2004).CrossRefGoogle Scholar
  48. 48.
    D. Zhao, Z. Fei, R. Scopelliti, P. J. Dyson, Inorg. Chem., 43, 2197-2205 (2004).CrossRefGoogle Scholar
  49. 49.
    H. Itoh, K. Naka, Y. Chujo, J. Am. Chem. Soc., 126, 3026-3027 (2004).CrossRefGoogle Scholar
  50. 50.
    A. P. Abbott, G. Capper, D. L. Davies, R. Rasheed, Inorg. Chem., 43, 3447-3452 (2004).CrossRefGoogle Scholar
  51. 51.
    Z. Fei, W. H. Ang, T. J. Geldbach, R. Scopelliti, P. J. Dyson, Chem. Eur. J., 12, 4014-4020 (2006).CrossRefGoogle Scholar
  52. 52.
    K. -M. Lee, Y. -T. Lee, Y. J. B. Lin, J. Mater. Chem., 13, 1079-1084 (2003).CrossRefGoogle Scholar
  53. 53.
    A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J. H. Davis Jr., R. D. Rogers, Chem. Commun., 135-136 (2001).Google Scholar
  54. 54.
    L. Zhou, L. Wang, Synthesis, 2653-2658 (2006).Google Scholar
  55. 55.
    D. Zhao, Z. Fei, T. J. Geldbach, R. Scopelliti, P. J. Dyson, J. Am. Chem. Soc., 126, 15876-15882 (2004).CrossRefGoogle Scholar
  56. 56.
    Z. Fei, D. Zhao, D. Pieraccini, W. H. Ang, T. J. Geldbach, R. Scopelliti, C. Chiappe, P. J. Dyson, Organometallics, 26, 1588-1598 (2007).CrossRefGoogle Scholar
  57. 57.
    C. Chiappe, D. Pieraccini, D. Zhao, Z. Fei, P. J. Dyson, Adv. Synth. Catal., 348, 68-74 (2006).CrossRefGoogle Scholar
  58. 58.
    D. Astruc, F. Lu, J. R. Aranzaes, Angew. Chem. Int. Ed. Eng., 44, 7852-7872 (2005).CrossRefGoogle Scholar
  59. 59.
    M. Lombardo, F. Pasi, C. Trombini, K. R. Seddon, W. R. Pitner, Green Chem., 9, 321-322 (2007).CrossRefGoogle Scholar
  60. 60.
    S. Li, Y. Lin, H. Xie, S. Zhang, J. Xu, Org. Lett., 8, 391-394 (2006).CrossRefGoogle Scholar
  61. 61.
    X. Mu, J. Meng, Z. -C. Li, Y. Kou, J. Am. Chem. Soc., 127, 9694-9695 (2005).CrossRefGoogle Scholar
  62. 62.
    T. J. Geldbach, D. Zhao, N. C. Castillo, G. Laurenczy, B. Weyershausen, P. J. Dyson, J. Am. Chem. Soc., 128, 9773-9780 (2006).CrossRefGoogle Scholar
  63. 63.
    K. -S. Kim, D. Demberelnyamba, H. Lee, Langmuir, 20, 556-560 (2004).CrossRefGoogle Scholar
  64. 64.
    C. P. Mehnert, Chem. Eur. J., 11, 50-56 (2005).CrossRefGoogle Scholar
  65. 65.
    A. Kirschning, W. Solodenko, K. Mennecke, Chem. Eur. J., 12, 5972-5990 (2006).CrossRefGoogle Scholar
  66. 66.
    A. Riisager, R. Fehrmann, M. Haumann, P. Wasserscheid, Eur. J. Inorg. Chem., 695-706 (2006), and references therein.Google Scholar
  67. 67.
    M. Haumann, K. Dentler, J. Joni, A. Riisager, P. Wasserscheid, Adv. Synth. Catal., 349, 425-431 (2007).CrossRefGoogle Scholar
  68. 68.
    U. Hintermair, G. Zhao, C. C. Santini, M. J. Muldoon, D. J. Cole-Hamilton, Chem. Commun., 1462-1464 (2007).Google Scholar
  69. 69.
    M. Ruta, I. Yuranov, P. J. Dyson, G. Laurenczy, L. Kiwi-Minsker, J. Catal., 247, 269-276 (2007).CrossRefGoogle Scholar
  70. 70.
    Y. Gu, C. Ogawa, J. Kobayashi, Y. Mori, S. Kobayashi, Angew. Chem. Int. Ed. Eng., 45, 7217-7220 (2006).CrossRefGoogle Scholar
  71. 71.
    Y. Gu, C. Ogawa, S. Kobayashi, Org. Lett., 9, 175-178 (2007).CrossRefGoogle Scholar
  72. 72.
    F. van Rantwijk, R. Madeira Lau, R. A. Seddon, Trends Biotechnol., 21, 131-139 (2003).CrossRefGoogle Scholar
  73. 73.
    M. Mori, R. Gomez Garcia, M. P. Belleville, D. Paolucci-Jeanjean, J. Sanchez, P. Lozano, M. Vaultier, G. Rios, Catal. Today, 104, 313-317 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Claudio Trombini
    • 1
    • 2
  • Marco Lombardo
    • 1
    • 2
  1. 1.University of BolognaDipartimento di Chimica “G. Ciamician”Bologna
  2. 2.Consorzio Interuniversitario Nazionale “la Chimica per l’Ambiente”INCAMarghera (Venezia)

Personalised recommendations