Cancer Vaccines and Immune Monitoring (An Overview)

Part of the Methods of Cancer Diagnosis, Therapy, and Prognosis book series (HAYAT, volume 2)

The successful development of vaccines to prevent infectious diseases has made a major impact on public health. Global vaccination campaigns have eradicated or controlled once deadly diseases such as smallpox and polio. During the last decade, intense research into vaccines has continued with attempts to develop vaccines against globally important diseases such as malaria, tuberculosis and AIDS, and emerging infectious organisms with the potential to cause pandemics. Another area of human health that has been targeted for vaccine development is cancer, with 10 million new cases of cancer per annum worldwide. The World Health Organisation (2003) has predicted that this figure will rise to 15 million per annum by 2020. Despite advances in diagnosis and treatment, the prognosis for advanced, recurrent or metastatic disease is poor. In developing countries, incidence of cancer usually equates to mortality. Therefore, new approaches are needed, and this has driven the development of cancer vaccines to prevent or treat cancers.

Prophylactic cancer vaccines aim to prevent infection by infectious organisms that cause cancer. This is achieved by inducing strong and sustained antibody responses by activating specific B-lymphocytes. There are currently two licensed prophylactic cancer vaccines; one to prevent Hepatitis B virus infection that is associated with development of liver cancer, and the other to prevent human papillomavirus infection that is associated with the development of cervical cancer.


Cervical Cancer Treg Cell Cancer Vaccine ELISPOT Assay Dendritic Cell Vaccine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M., Borysiewicz, L., Fiander, A., Man, S.,Jasani, B., Navabi, H., Lipetz, C., Evans, A.S., and Mason, M. 2001. Clinical studies of human apilloma vaccines in pre-invasive and invasive ancer.Vaccine 19: 2549–2556PubMedCrossRefGoogle Scholar
  2. Altman, J.D., Moss, P.A.H., Goulder, P.J.R., Barouch, D.H., McHeyzer-Williams, M.G., Bell, J.I., McMichael, A.J., and Davis, M.M. 1996. Phenotypic analysis of antigen-specific T lymphocytes. Science 274: 94–96PubMedCrossRefGoogle Scholar
  3. Barber, D.L., Wherry, E.J., and Ahmed, R. 2003. Cutting edge: rapid in vivo killing by memory CD8 T cells.J. Immunol. 171: 27–31PubMedGoogle Scholar
  4. Betts, M.R., Brenchley, J.M., Price, D.A., De Rosa, S.C., Douek, D.C., Roederer, M., and Koup, R.A. 2003. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation.J. Immunol. Methods 281: 65–78PubMedCrossRefGoogle Scholar
  5. Borysiewicz, L.K., Fiander, A., Nimako, M., Man, S., Wilkinson, G.W.G., Westmoreland, D., Evans, A.S., Adams, M., Stacey, S.N., Boursnell, M.E.G., Rutherford, E., Hickling, J.K., and Inglis, S.C. 1996. A recombinant vaccinia virus encoding human papillomavirus type 16 and type 18, e6 and e7 proteins as immunotherapy or cervical cancer. Lancet 347: 1523–1527PubMedCrossRefGoogle Scholar
  6. Breitburd, F., Kirnbauer, R., Hubbert, N.L., Nonnenmacher, B., Trin-dinh-Desmarquet, C., Orth, G., Schiller, J.T., and Lowy, D.R. 1995. Immunization with virus-like particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J. Virol. 69: 3959–3963PubMedGoogle Scholar
  7. Brunner, K., Mauel, J., Cerottini, J.-C., and Chapuis, B. 1968. Quantitative assay of the lytic action of immune lymphoid cells on 51Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs.Immunology 14: 181–196PubMedGoogle Scholar
  8. Cohen, C., Li, Y., El-Gamil, M., Robbins, P., Rosenberg, S., and Morgan, R. 2007. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond.Cancer Res. 67: 3898–3903PubMedCrossRefGoogle Scholar
  9. Coleman, S., Clayton, A., Mason, M.D., Jasani, B., Adams, M., and Tabi, Z. 2005. Recovery of CD8+ T-cell function during systemic chemotherapy in advanced ovarian cancer. Cancer Res. 65: 7000–7006PubMedCrossRefGoogle Scholar
  10. Czerniecki, B., Koski, G., Koldovsky, U., Xu, S., Cohen, P., Mick, R., Nisenbaum, H., Pasha, T., Xu, M., Fox, K., Weinstein, S., Orel, S., Vonderheide, R., Coukos, G., DeMichele, A., Araujo, L., Spitz, F., Rosen, M., Levine, B., June, C., and Zhang, P. 2007. Targeting HER- 2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res. 67: 1842–1852PubMedCrossRefGoogle Scholar
  11. Dudley, M.E., Wunderlich, J.R., Robbins, P.F., Yang, J.C., Hwu, P., Schwartzentruber, D.J., Topalian, S.L., Sherry, R., Restifo, N.P., Hubicki, A.M., Robinson, M.R., Raffeld, M., Duray, P., Seipp, C.A., Rogers-Freezer, L., Morton, K.E., Mavroukakis, S.A., White, D.E., and Rosenberg, S.A. 2002. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298: 850–854PubMedCrossRefGoogle Scholar
  12. Dudley, M.E., Wunderlich, J.R., Yang, J.C., Sherry, R., Topalian, S.L., Restifo, N.P., Royal, R., Kammula, U., White, D.E., Mavroukakis, S.A., Rogers-Freezer, L., Gracia, G., Jones, S., Mangiameli, D., Pelletier, M., Gea-Banacloche, J., Robinson, M.R., Berman, D., Filie, A., Abati, A., and Rosenberg, S.A. 2005. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23: 2346–2357PubMedCrossRefGoogle Scholar
  13. Faroudi, M., Utzny, C., Salio, M., Cerundolo, V., Guiraud, M., Muller, S., and Valitutti, S. 2003. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc. Natl. Acad. Sci. USA 100: 14145–14150PubMedCrossRefGoogle Scholar
  14. Fattorossi, A., Battaglia, A., Ferrandina, G., Coronetta, F., Legge, F., Salutari, V., and Scambia, G. 2004. Neoadjuvant therapy changes the lymphocyte composition of tumor-draining lymph nodes in cervical carcinoma.Cancer 100: 1418–1428PubMedCrossRefGoogle Scholar
  15. Fay, J., Palucka, A., Paczesny, S., Dhodapkar, M., Johnston, D., Burkeholder, S., Ueno, H., and Banchereau, J. 2006. Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells. Cancer Immunol. Immunother. 55: 1209–1218PubMedCrossRefGoogle Scholar
  16. Fong, L., Brockstedt, D., Benike, C., Wu, L., and Engleman, E. 2001. Dendritic cells injected via different routes induce immunity in cancer patients. J. Immunol. 166: 4254–4259PubMedGoogle Scholar
  17. Frazer, I. 2006. God's gift to women: the human papillomavirus vaccine. Immunity 25: 179–184PubMedCrossRefGoogle Scholar
  18. FUTURE 2007. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N. Engl. J. Med. 356: 1915–1927CrossRefGoogle Scholar
  19. Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., Tosolini, M., Camus, M., Berger, A., Wind, P., Zinzindohoué, F., Bruneval, P., Cugnenc, P., Trajanoski, Z., Fridman, W., and Pagès, F. 2006. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome.Science 313: 1960–1964PubMedCrossRefGoogle Scholar
  20. Gattinoni, L., Powell, D., Rosenberg, S., and Restifo, N. 2006. Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol. 6: 383–393PubMedCrossRefGoogle Scholar
  21. Ghiringhelli, F., Puig, P., Roux, S., Parcellier, A., Schmitt, E., Solary, E., Kroemer, G., Martin, F., Chauffert, B., and Zitvogel, L. 2005. Tumor cells convert immature myeloid dendritic cells into TGF-{beta}-secreting cells inducing CD4+CD25+ regulatory T cell proliferation.J. Exp. Med. 202: 919–929PubMedCrossRefGoogle Scholar
  22. Gong, J., Chen, D., Kashiwaba, M., and Kufe, D. 1977. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells.Nat. Med. 3: 558–561CrossRefGoogle Scholar
  23. Harrop, R., John, J., and Carroll, M. 2006. Recombinant viral vectors: cancer vaccines. Adv. Drug Deliv. Rev. 58: 931–947PubMedCrossRefGoogle Scholar
  24. Jonuleit, H., Giesecke-Tuettenberg, A., Tüting, T., Thurner-Schuler, B., Stuge, T., Paragnik, L., Kandemir, A., Lee, P., Schuler, G., Knop, J., and Enk, A. 2001. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection.Int. J. Cancer 93: 243–251PubMedCrossRefGoogle Scholar
  25. Kaufman, H., Wang, W., Manola, J., DiPaola, R., Ko, Y., Sweeney, C., Whiteside, T., Schlom, J., Wilding, G., and Weiner, L. 2004. Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): a trial of the Eastern Cooperative Oncology Group. J. Clin. Oncol. 22: 2122–2132PubMedCrossRefGoogle Scholar
  26. Klebanoff, C.A., Gattinoni, L., Torabi-Parizi, P., Kerstann, K., Cardones, A.R., Finkelstein, S.E., Palmer, D.C., Antony, P.A., Hwang, S.T., Rosenberg, S.A., Waldmann, T.A., and Restifo, N.P. 2005. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc. Natl. Acad. Sci. USA 102: 9571–9576PubMedCrossRefGoogle Scholar
  27. Koutsky, L.A., Ault, K.A., Wheeler, C.M., Brown, D.R., Barr, E., Alvarez, F.B., Chiacchierini, L.M., and Jansen, K.U. 2002. A controlled trial of a human papillomavirus type 16 vaccine.N. Engl. J. Med. 347: 1645–1651PubMedCrossRefGoogle Scholar
  28. Lalvani, A., Brookes, R., Hambleton, S., Britton, W.J., Hill, A.V., and McMichael, A.J. 1997. Rapid effector function in CD8+ memory T cells. J. Exp. Med. 186: 859–865PubMedCrossRefGoogle Scholar
  29. Marshall, J., Gulley, J., Arlen, P., Beetham, P., Tsang, K., Slack, R., Hodge, J., Doren, S., Grosenbach, D., Hwang, J., Fox, E., Odogwu, L., Park, S., Panicali, D., and Schlom, J. 2005. Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoem- bryonic antigen-expressing carcinomas. J. Clin. Oncol. 23: 720–731PubMedCrossRefGoogle Scholar
  30. Medema, J.P., de Jong, J., Peltenburg, L.T., Verdegaal, E.M., Gorter, A., Bres, S.A., Franken, K.L., Hahne, M., Albar, J.P., Melief, C.J., and Offringa, R. 2001. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc. Natl. Acad. Sci. USA 98: 11515–11520PubMedCrossRefGoogle Scholar
  31. Morgan, R., Dudley, M., Wunderlich, J., Hughes, M., Yang, J., Sherry, R., Royal, R., Topalian, S., Kammula, U., Restifo, N., Zheng, Z., Nahvi, A., de Vries, C., Rogers-Freezer, L., Mavroukakis, S., and Rosenberg, S. 2006. Cancer regression in patients after transfer of genetically engineered lymphocytes.Science 314: 126–129PubMedCrossRefGoogle Scholar
  32. Morgenroth, A., Cartellieri, M., Schmitz, M., Günes, S., Weigle, B., Bachmann, M., Abken, H., Rieber, E., and Temme, A. 2007. Targeting of tumor cells expressing the prostate stem cell antigen (PSCA) using genetically engineered T- cells. Prostate 67: 1121–1131PubMedCrossRefGoogle Scholar
  33. Motyka, B., Korbutt, G., Pinkoski, M.J., Heibein, J.A., Caputo, A., Hobman, M., Barry, M., Shostak, I., Sawchuk, T., Holmes, C.F., Gauldie, J., and Bleackley, R.C. 2000. Mannose 6-phosphate/ insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell- induced apoptosis.Cell 103: 491–500PubMedCrossRefGoogle Scholar
  34. Nestle, F., Alijagic, S., Gilliet, M., Sun, Y., Grabbe, S., Dummer, R., Burg, G., and Schadendorf, D. 1998. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. 4: 328–332PubMedCrossRefGoogle Scholar
  35. Nimako, M., Fiander, A.N., Wilkinson, G.W., Borysiewicz, L.K., and Man, S. 1997. Human papillomavirus-specific cytotoxic T lymphocytes in patients with cervical intraepithelial neoplasia grade III.Cancer Res. 57: 4855–4861PubMedGoogle Scholar
  36. Nowak, A., Lake, R., and Robinson, B. 2006. Combined chemoimmunotherapy of solid tumours: improving vaccines?Adv. Drug Deliv. Rev. 58: 975–990PubMedCrossRefGoogle Scholar
  37. Obeid, M., Panaretakis, T., Joza, N., Tufi, R., Tesniere, A., van Endert, P., Zitvogel, L., and Kroemer, G. 2007a. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 14: 1848–1850CrossRefGoogle Scholar
  38. Obeid, M., Tesniere, A., Ghiringhelli, F., Fimia, G., Apetoh, L., Perfettini, J., Castedo, M., Mignot, G., Panaretakis, T., Casares, N., Mètivier, D., Larochette, N., van Endert, P., Ciccosanti, F., Piacentini, M., Zitvogel, L., and Kroemer, G. 2007b. Calreticulin exposure dictates the immunogenicity of cancer cell death.Nat. Med. 13: 54–61CrossRefGoogle Scholar
  39. Okada, H., and Mak, T. 2004. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer 4: 592–603PubMedCrossRefGoogle Scholar
  40. Parkin, D.M. 2006. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 118: 3030–3044PubMedCrossRefGoogle Scholar
  41. Pedersen, C., Petaja, T., Strauss, G., Rumke, H.C., Poder, A., Richardus, J.H., Spiessens, B., Descamps, D., Hardt, K., Lehtinen, M., and Dubin, G. 2007. Immunization of early adolescent females with human papillomavirus type 16 and 18 L1 virus-like particle vaccine containing AS04 adjuvant. J. Adolescent Health 40: 564–571CrossRefGoogle Scholar
  42. Powell, D., Dudley, M., Hogan, K., Wunderlich, J., and Rosenberg, S. 2006. Adoptive transfer of vaccine-induced peripheral blood mononuclear cells to patients with metastatic melanoma following lymphodepletion.J. Immunol. 177: 6527–6539PubMedGoogle Scholar
  43. Rosenberg, S.A., Yang, J.C., and Restifo, N.P. 2004. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10: 909–915PubMedCrossRefGoogle Scholar
  44. Rubio, V., Stuge, T.B., Singh, N., Betts, M.R., Weber, J.S., Roederer, M., and Lee, P.P. 2003. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat. Med. 9: 1377–1382PubMedCrossRefGoogle Scholar
  45. Scheibenbogen, C., Romero, P., Rivoltini, L., Herr, W., Schmittel, A., Cerottini, J., Woelfel, T., Eggermont, A., and Keilholz, U. 2000. Quantitation of antigen-reactive T cells in peripheral blood by IFNgamma-ELISPOT assay and chromium-release assay: a four-centre comparative trial. J. Immunol. Methods 244: 81–89PubMedCrossRefGoogle Scholar
  46. Sharrock, C., Kaminski, E., and Man, S. 1990. Limiting dilution analysis of human T cells:-it's relevance to clinical immunology.Immunol. Today 11: 265–299CrossRefGoogle Scholar
  47. Suzich, J.A., Ghim, S.J., Palmer-Hill, F.J., White, W.I., Tamura, J.K., Bell, J.A., Newsome, J.A., Jenson, A.B., and Schlegel, R. 1995. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc. Natl. Acad. Sci. USA 92: 11553–11557PubMedCrossRefGoogle Scholar
  48. Tsang, K., Zaremba, S., Nieroda, C., Zhu, M., Hamilton, J., and Schlom, J. 1995. Generation of human cytotoxic T cells specific for human car-cinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine.J. Natl. Cancer Inst. 87: 982–990PubMedCrossRefGoogle Scholar
  49. Valitutti, S., Muller, S., Dessing, M., and Lanzavecchia, A. 1996. Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J. Exp. Med. 183: 1917–1921PubMedCrossRefGoogle Scholar
  50. Valmori, D., Souleimanian, N., Tosello, V., Bhardwaj, N., Adams, S., O'Neill, D., Pavlick, A., Escalon, J., Cruz, C., Angiulli, A., Angiulli, F., Mears, G., Vogel, S., Pan, L., Jungbluth, A., Hoffmann, E., Venhaus, R., Ritter, G., Old, L., and Ayyoub, M. 2007. Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming.Proc. Natl. Acad.Sci. USA 104: 8947–8952PubMedCrossRefGoogle Scholar
  51. van der Burg, S., Bijker, M., Welters, M., Offringa, R., and Melief, C. 2006. Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy.Adv. Drug Deliv. Rev. 58: 916–930PubMedCrossRefGoogle Scholar
  52. WHO 2003. “World Cancer Report”, IARC, LyonGoogle Scholar
  53. Wolint, P., Betts, M.R., Koup, R.A., and Oxenius, A. 2004. Immediate cytotoxicity but not degranulation distinguishes effector and memory subsets of CD8+ T cells. J. Exp. Med. 199: 925–936PubMedCrossRefGoogle Scholar
  54. Zhao, Y., Parkhurst, M., Zheng, Z., Cohen, C., Riley, J., Gattinoni, L., Restifo, N., Rosenberg, S., and Morgan, R. 2007. Extrathymic generation of tumor-specific T cells from genetically engineered human hematopoietic stem cells via Notch signaling. Cancer Res. 67: 2425–2429PubMedCrossRefGoogle Scholar
  55. Zhou, J., Shen, X., Huang, J., Hodes, R., Rosenberg, S., and Robbins, P. 2005. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J. Immunol. 175: 7046–7052PubMedGoogle Scholar
  56. Zinkernagel, R., and Doherty, P.C. 1974. Immunological surveillance against altered self components by sensitized T lymphocytes in lymphocytic choriomenigitis. Nature 251: 547–548PubMedCrossRefGoogle Scholar
  57. zur Hausen, H. 2002. Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer 2: 342–350PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.Department of Oncology and Palliative MedicineVelindre HospitalWhitchurchUnited Kingdom
  2. 2.Department of Medical Biochemistry and ImmunologySchool of Medicine, Cardiff UniversityUK

Personalised recommendations