Skip to main content

Part of the book series: Methods of Cancer Diagnosis, Therapy, and Prognosis ((HAYAT,volume 2))

p53 was discovered in 1979 as a cellular protein that forms a complex with the SV40 large T antigen in SV40-transformed cells, which first suggested that p53 was an oncoprotein. Ten years later, however, several studies led to the conclusion that p53 is a tumor suppressor protein. Among these was the seminal study by Baker et al. (1989), which reported colorectal cancer cell lines containing one mutated TP53 allele and missing the other allele, an observation consistent with the theoretical hallmark of tumor suppressors (Knudson, 1985). The mutation/deletion of TP53 was soon demonstrated in many common tumor types (Nigro et al., 1989), and the cancerprone Li-Fraumeni Syndrome, which is characterized by a familial clustering of early (< 45 years) onset tumors, was found to be caused by germline mutations in the TP53 gene (Malkin et al., 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Aas, T., Borresen, A. L., Geisler, S., Smith-Sorensen, B., Johnsen, H., Varhaug, J. E., Akslen, L. A., and Lonning, P. E. 1996. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat. Med. 2: 811–814

    Article  PubMed  CAS  Google Scholar 

  • Baker, S. J., Fearon, E. R., Nigro, J. M., Hamilton, S. R., Preisinger, A. C., Jessup, J. M., vanTuinen, P., Ledbetter, D. H., Barker, D. F., Nakamura, Y., White, R., and Vogelstein, B. 1989. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244: 217–221

    Article  PubMed  CAS  Google Scholar 

  • Bernal, F., Tyler, A. F., Korsmeyer, S. J., Walensky, L. D., and Verdine, G. L. 2007. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J. Am. Chem. Soc. 129: 2456–2457

    Article  PubMed  CAS  Google Scholar 

  • Bodak, N., Queille, S., Avril, M. F., Bouadjar, B., Drougard, C., Sarasin, A., and Daya-Grosjean, L. 1999. High levels of patched gene mutations in basal-cell carcinomas from patients with xeroderma pigmentosum. Proc. Natl. Acad. Sci. U.S.A. 96: 5117–5122

    Article  PubMed  CAS  Google Scholar 

  • Bond, G. L., Hu, W., Bond, E. E., Robins, H., Lutzker, S. G., Arva, N. C., Bargonetti, J., Bartel, F., Taubert, H., Wuerl, P., Onel, K., Yip, L., Hwang, S. J., Strong, L. C., Lozano, G., and Levine, A. J. 2004. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119: 591–602

    Article  PubMed  CAS  Google Scholar 

  • Bond, G. L., Hirshfield, K. M., Kirchhoff, T., Alexe, G., Bond, E. E., Robins, H., Bartel, F., Taubert, H., Wuerl, P., Hait, W., Toppmeyer, D., Offit, K., and Levine, A. J. 2006. MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res. 66: 5104–5110

    Article  PubMed  CAS  Google Scholar 

  • Bottger, A., Bottger, V., Sparks, A., Liu, W. L., Howard, S. F., and Lane, D. P. 1997. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr. Biol. 7: 860–869

    Article  PubMed  CAS  Google Scholar 

  • Bourdon, J. C. 2007. p53 and its isoforms in cancer. Br. J. Cancer 97: 277–282

    Article  PubMed  CAS  Google Scholar 

  • Bourdon, J. C., Fernandes, K., Murray-Zmijewski, F., Liu, G., Diot, A., Xirodimas, D. P., Saville, M. K., and Lane, D. P. 2005. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 19: 2122–2137

    Article  PubMed  CAS  Google Scholar 

  • Brummelkamp, T. R., Fabius, A. W., Mullenders, J., Madiredjo, M., Velds, A., Kerkhoven, R. M., Bernards, R., and Beijersbergen, R. L. 2006. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat. Chem. Biol. 2: 202–206

    Article  PubMed  CAS  Google Scholar 

  • Bullock, A. N., and Fersht, A. R. 2001. Rescuing the function of mutant p53. Nat. Rev. Cancer 1: 68–76

    Google Scholar 

  • Bykov, V. J., Zache, N., Stridh, H., Westman, J., Bergman, J., Selivanova, G., and Wiman, K. G. 2005. PRIMA-1(MET) synergizes with cisplatinto induce tumor cell apoptosis. Oncogene 24: 3484–3491

    Article  PubMed  CAS  Google Scholar 

  • Chandler, D. S., Singh, R. K., Caldwell, L. C., Bitler, J. L., and Lozano, G. 2006. Genotoxic stress induces coordinately regulated alternative splicing of the p53 modulators MDM2 and MDM4. Cancer Res. 66: 9502–9508

    Article  PubMed  CAS  Google Scholar 

  • Chipuk, J. E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D. D., and Green, D. R. 2005. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309: 1732–1735

    Article  PubMed  CAS  Google Scholar 

  • Cui, R., Widlund, H. R., Feige, E., Lin, J. Y., Wilensky, D. L., Igras, V. E., D'Orazio, J., Fung, C. Y., Schanbacher, C. F., Granter, S. R., and Fisher, D. E. 2007. Central role of p53 in the suntan response and pathologic hyperpigmenta-tion. Cell 128: 853–864

    Article  PubMed  CAS  Google Scholar 

  • Dearth, L. R., Qian, H., Wang, T., Baroni, T. E., Zeng, J., Chen, S. W., Yi, S. Y., and Brachmann, R. K. 2007. Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis 28: 289–298

    Article  PubMed  CAS  Google Scholar 

  • Denissenko, M. F., Koudriakova, T. B., Smith, L., O'Connor, T. R., Riggs, A. D., and Pfeifer, G. P. 1998. The p53 codon 249 mutational hotspot in hepatocellular carcinoma is not related to selective formation or persistence of aflatoxin B1 adducts. Oncogene 17: 3007–3014

    Article  PubMed  CAS  Google Scholar 

  • Dumont, P., Leu, J. I., Della Pietra, A. C., 3rd, George, D. L., and Murphy, M. 2003. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 33: 357–365

    Article  PubMed  CAS  Google Scholar 

  • Fleischhacker, M., and Schmidt, B. 2007. Circulating nucleic acids (CNAs) and cancer—a survey. Biochim. Biophys. Acta 1775: 181–232

    PubMed  CAS  Google Scholar 

  • Friedler, A., Hansson, L. O., Veprintsev, D. B., Freund, S. M., Rippin, T. M., Nikolova, P. V., Proctor, M. R., Rudiger, S., and Fersht, A. R. 2002. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc. Natl. Acad. Sci. U.S.A. 99: 937–942

    Article  PubMed  CAS  Google Scholar 

  • Jia, H. 2006. Controversial Chinese gene-therapy drug entering unfamiliar territory. Nat. Rev. Drug. Discov. 5: 269–270

    Article  PubMed  CAS  Google Scholar 

  • Joerger, A. C., Ang, H. C., and Fersht, A. R. 2006. Structural basis for understanding oncogenicp53 mutations and designing rescue drugs. Proc. Natl. Acad. Sci. U.S.A. 103: 15056–15061

    Article  PubMed  CAS  Google Scholar 

  • Kato, S., Han, S. Y., Liu, W., Otsuka, K., Shibata, H., Kanamaru, R., and Ishioka, C. 2003. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl. Acad. Sci. U.S.A. 100: 8424–8429

    Article  PubMed  CAS  Google Scholar 

  • Knudson, A. G., Jr. 1985. Hereditary cancer, oncogenes, and antioncogenes. Cancer Res. 45: 1437–1443

    PubMed  CAS  Google Scholar 

  • Krajewski, M., Ozdowy, P., D'Silva, L., Rothweiler, U., and Holak, T. A. 2005. NMR indicates that the small molecule RITA does not block p53-MDM2 binding in vitro. Nat. Med. 11: 1135– 1136; author reply 1136–1137

    Article  PubMed  CAS  Google Scholar 

  • Le Calvez, F., Mukeria, A., Hunt, J. D., Kelm, O., Hung, R. J., Taniere, P., Brennan, P., Boffetta, P., Zaridze, D. G., and Hainaut, P. 2005. TP53 and KRAS mutation load and types in lung cancers in relation to tobacco smoke: distinct patterns in never, former, and current smokers. Cancer Res. 65: 5076–5083

    Article  PubMed  Google Scholar 

  • Liu, G., Parant, J. M., Lang, G., Chau, P., Chavez-Reyes, A., El-Naggar, A. K., Multani, A., Chang, S., and Lozano, G. 2004. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat. Genet. 36: 63–68

    Article  PubMed  CAS  Google Scholar 

  • Malkin, D., Li, F. P., Strong, L. C., Fraumeni, J. F., Jr., Nelson, C. E., Kim, D. H., Kassel, J., Gryka, M. A., Bischoff, F. Z., Tainsky, M. A., and Friend, S. H. 1990. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238

    Article  PubMed  CAS  Google Scholar 

  • Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U. M. 2003. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11: 577–590

    Article  PubMed  CAS  Google Scholar 

  • Miller, L. D., Smeds, J., George, J., Vega, V. B., Vergara, L., Ploner, A., Pawitan, Y., Hall, P., Klaar, S., Liu, E. T., and Bergh, J. 2005. An expression signature for p53 status in human breast cancer predicts mutation status, transcrip-tional effects, and patient survival. Proc. Natl. Acad. Sci. U.S.A. 102: 13550–13555

    Article  PubMed  CAS  Google Scholar 

  • Munro, A. J., Lain, S., and Lane, D. P. 2005. P53 abnormalities and outcomes in colorectal cancer: a systematic review. Br. J. Cancer 92: 434–444

    PubMed  CAS  Google Scholar 

  • Nigro, J. M., Baker, S. J., Preisinger, A. C., Jessup, J. M., Hostetter, R., Cleary, K., Bigner, S. H., Davidson, N., Baylin, S., Devilee, P., Glover, T., F.S., C., Weslon, A., Modali, R., Harris, C. C., and Vogelstein, B. 1989. Mutations in the p53 gene occur in diverse human tumour types. Nature 342: 705–708

    Article  PubMed  CAS  Google Scholar 

  • Olive, K. P., Tuveson, D. A., Ruhe, Z. C., Yin, B., Willis, N. A., Bronson, R. T., Crowley, D., and Jacks, T. 2004. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119: 847–860

    Article  PubMed  CAS  Google Scholar 

  • Olivier, M., Eeles, R., Hollstein, M., Khan, M. A., Harris, C. C., and Hainaut, P. 2002. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 19: 607–614

    Article  PubMed  CAS  Google Scholar 

  • Patton, J. T., Mayo, L. D., Singhi, A. D., Gudkov, A. V., Stark, G. R., and Jackson, M. W. 2006. Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res. 66: 3169–3176

    Article  PubMed  CAS  Google Scholar 

  • Petitjean, A., Mathe, E., Kato, S., Ishioka, C., Tavtigian, S. V., Hainaut, P., and Olivier, M. 2007. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 28: 622–629

    Article  PubMed  CAS  Google Scholar 

  • Pharoah, P. D., Day, N. E., and Caldas, C. 1999. Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br. J. Cancer 80: 1968–1973

    Article  PubMed  CAS  Google Scholar 

  • Pietsch, E. C., Humbey, O., and Murphy, M. E. 2006. Polymorphisms in the p53 pathway. Oncogene 25: 1602–1611

    Article  PubMed  CAS  Google Scholar 

  • Rohaly, G., Chemnitz, J., Dehde, S., Nunez, A. M., Heukeshoven, J., Deppert, W., and Dornreiter, I. 2005. A novel human p53 isoform is an essential element of the ATR-intra-S phase checkpoint. Cell 122: 21–32

    Article  PubMed  CAS  Google Scholar 

  • Sherr, C. J. 2006. Divorcing ARF and p53: an unsettled case. Nat. Rev. Cancer 6: 663–673

    Article  PubMed  CAS  Google Scholar 

  • Sjalander, A., Birgander, R., Saha, N., Beckman, L., and Beckman, G. 1996. p53 polymorphisms and haplotypes show distinct differences between major ethnic groups. Hum. Hered. 46: 41–48

    Article  PubMed  CAS  Google Scholar 

  • Song, H., Hollstein, M., and Xu, Y. 2007. p53 gain-of-function cancer mutants induce geneticinstability by inactivating ATM. Nat. Cell. Biol. 9: 573–580

    Article  PubMed  CAS  Google Scholar 

  • Stiewe, T. 2007. The p53 family in differentiation and tumorigenesis. Nat. Rev. Cancer 7: 165–168

    Article  PubMed  CAS  Google Scholar 

  • Toledo, F., and Wahl, G. M. 2006. Regulating the p53 pathway: in vitro hypotheses, in vivo ver-itas. Nat. Rev. Cancer 6: 909–923

    Article  PubMed  CAS  Google Scholar 

  • Toledo, F., Krummel, K. A., Lee, C. J., Liu, C. W., Rodewald, L. W., Tang, M., and Wahl, G. M.2006. A mouse p53 mutant lacking the proline rich domain rescues Mdm4 deficiency and provides insight into the Mdm2-Mdm4-p53 regulatory network. Cancer Cell 9: 273–285

    Article  PubMed  CAS  Google Scholar 

  • Toledo, F., Bluteau, O., and Simeonova, I. 2007. [The activation of p53 in tumors: a promising strategy against cancer.]. Med. Sci. (Paris) 23: 565–567

    Google Scholar 

  • Tornaletti, S., and Pfeifer, G. P. 1995. Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers. Oncogene 10: 1493–1499

    PubMed  CAS  Google Scholar 

  • Vassilev, L. T. 2007. MDM2 inhibitors for cancer therapy. Trends Mol. Med. 13: 23–31

    Article  PubMed  CAS  Google Scholar 

  • Ventura, A., Kirsch, D. G., McLaughlin, M. E., Tuveson, D. A., Grimm, J., Lintault, L., Newman, J., Reczek, E. E., Weissleder, R., and Jacks, T. 2007. Restoration of p53 function leads to tumour regression in vivo. Nature 445: 661–665

    Article  Google Scholar 

  • Ventura, A., Kirsch, D. G., McLaughlin, M. E., Tuveson, D. A., Grimm, J., Lintault, L., Newman, J., Reczek, E. E., Weissleder, R., and Jacks, T. 2007. Restoration of p53 function leads to tumour regression in vivo. Nature 445: 661–665

    Article  PubMed  CAS  Google Scholar 

  • Weihrauch, M., Bader, M., Lehnert, G., Wittekind, C., Tannapfel, A., and Wrbitzky, R. 2002. Carcinogen-specific mutation pattern in the p53 tumour suppressor gene in UV radiation-induced basal cell carcinoma. Int. Arch. Occup. Environ. Health 75: 272–276

    Article  PubMed  CAS  Google Scholar 

  • Wijnhoven, S. W., Speksnijder, E. N., Liu, X., Zwart, E., vanOostrom, C. T., Beems, R. B., Hoogervorst, E. M., Schaap, M. M., Attardi, L. D., Jacks, T., van Steeg, H., Jonkers, J., and de Vries, A. 2007. Dominant-negative but not gain-of-function effects of a p53.R270H mutation in mouse epithelium tissue after DNA damage. Cancer Res. 67: 4648–4656

    Article  PubMed  CAS  Google Scholar 

  • Wischhusen, J., Naumann, U., Ohgaki, H., Rastinejad, F., and Weller, M. 2003. CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. Oncogene 22: 8233–8245

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Toledo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Toledo, F. (2008). Role of TP53 Mutations in Cancer (An Overview). In: Hayat, M.A. (eds) General Methods and Overviews, Lung Carcinoma and Prostate Carcinoma. Methods of Cancer Diagnosis, Therapy, and Prognosis, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8442-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8442-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8441-6

  • Online ISBN: 978-1-4020-8442-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics