Prostate Cancer: Detection of Free Tumor-Specific DNA in Blood and Bone Marrow

  • Heidi Schwarzenbach
  • Klaus Pantel
Part of the Methods of Cancer Diagnosis, Therapy, and Prognosis book series (HAYAT, volume 2)

Prostate carcinoma is one of the most frequently diagnosed cancer types in men. If diagnosed at an early stage, prostate cancer is usually treatable. For a patient with a clinically localized tumor, the primary treatment alternatives are surgery and radiotherapy. Conversely, if this cancer entity is identified at a late stage and metastases are identified, complete remissions are rare by the current medical therapies. To identify prostate cancer, Gleason grading score, serum markers, and clinical staging are important factors which are related to tumor volume, zonal origin of the tumor, and spread into the gland and surrounding tissues. Diagnostic standard tools, such as the measurement of prostate-specific antigen (PSA) and standard transrectal ultrasound-guided biopsies, lack sufficient specificity and sensitivity for detection of all prostate cancer cases, and therefore, every fourth prostate tumor remains undiagnosed. In particular, a rise of PSA level in blood is not specific enough to distinguish between malignant and benign lesions including benign prostatic hypertrophy (BPH) and prostatitis. A low PSA value does not guarantee a disease-free outcome, and an elevated value is frequently associated with negative biopsies (Algaba et al., 2007).


Prostate Cancer Prostate Cancer Patient Allelic Imbalance Disseminate Tumor Cell Benign Prostatic Hyper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Algaba, F., Trias, I., and Arce, Y. 2007. Natural history of prostatic carcinoma: the pathologist's perspective.Recent Results Cancer Res.175: 9–24PubMedCrossRefGoogle Scholar
  2. Allen, D., Butt, A., Cahill, D., Wheeler, M., Popert, R., and Swaminathan, R. 2004. Role of cell-free plasma DNA as a diagnostic marker for prostate cancer.Ann. NY Acad. Sci 1022: 76–80PubMedCrossRefGoogle Scholar
  3. Anker, P., Mulcahy, H., Chen, X.Q., and Stroun M. 1999. Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients.Cancer Metastasis Rev.18: 65–73PubMedCrossRefGoogle Scholar
  4. Bai, V.U., Kaseb, A., Tejwani, S., Divine, G.W., Barrack, E.R., Menon, M., Pardee, A.B., and Reddy G.P. 2007. Identification of prostate cancer mRNA markers by averaged differential expression and their detection in biopsies, blood, and urine.Proc. Natl. Acad. Sci. USA 104: 2343–2348PubMedCrossRefGoogle Scholar
  5. Bastian, P.J., Palapattu, G.S., Lin, X., Yegnasubramanian, S., Mangold, L.A., Trock, B., Eisenberger, M.A., Partin, A.W., and Nelson, W. G. 2005. Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy.Clin. Cancer Res.11: 4037–4043PubMedCrossRefGoogle Scholar
  6. Bendich, A., Wilczok, T., and Borenfreund, E. 1965. Circulating DNA as a possible factor in oncogenesis.Science 148: 374–376PubMedCrossRefGoogle Scholar
  7. Boddy, J.L., Gal, S., Malone, P.R., Shaida, N., Wainscoat, J.S., and Harris, A.L. 2006. The role of cell-free DNA size distribution in the management of prostate cancer.Oncol. Res.16: 35–41PubMedGoogle Scholar
  8. Chen, X., Bonnefoi, H., Diebold-Berger, S., Lyautey, J., Lederrey, C., Faltin-Traub, E., Stroun, M., and Anker, P. 1999. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer.Clin. Cancer Res.5: 2297–303PubMedGoogle Scholar
  9. Choi, J.J., Reich 3rd, C.G., and Pisetsky, D.S. 2005. The role of macrophages in thein vitro generation of extracellular DNA from apoptotic and necrotic cells.Immunology 115: 55–62PubMedCrossRefGoogle Scholar
  10. Chun, F.K.H., Müller, I., Lange, I., Friedrich, M., Erbersdobler, A., Karakiewicz, P.I., Graefen, M., Pantel, K., Huland, H., and Schwarzenbach, H. 2006 Circulating tumour-associated plasma DNA represents an independent and informative predictor of prostate cancer.Br. J. Urol. Int.98: 544–548Google Scholar
  11. Costa, V.L., Henrique R., and Jerónimo, C. 2007. Epigenetic markers for molecular detection of prostate cancer.Dis. Markers 23: 31–41PubMedGoogle Scholar
  12. Coulet, F., Blons, H., Cabelguenne, A., Lecomte, T., Laccourreye, O., Brasnu, D., Beaune, P., Zucman, J., and Laurent-Puig, P. 2000. Detection of plasma tumor DNA in head and neck squa-mous cell carcinoma by microsatellite typing and p53 mutation analysis.Cancer Res.60: 707–711PubMedGoogle Scholar
  13. Diehl, F., Li, M., Dressman, D., He, Y., Shen, D., Szabo, S., Diaz, Jr. L.A., Goodman, S.N., David, K. A., Juhl, H., Kinzler, K.W., and Vogelstein B. 2005. Detection and quantification of mutations in the plasma of patients with colorectal tumors.Proc. Natl. Acad. Sci. USA.102: 16368–16373PubMedCrossRefGoogle Scholar
  14. Ellinger, J., Bastian, P.J., Haan, K.I., Heukamp, L. C., Buettner, R., Fimmers, R., Mueller, S.C., and von Ruecker, A. 2007. Noncancerous PTGS2 DNA fragments of apoptotic origin in sera of prostate cancer patients qualify as diagnostic and prognostic indicators.Int. J. Cancer 122: 138–143CrossRefGoogle Scholar
  15. Esteller, M., and Herman, J.G. 2002. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours.J. Pathol.196: 1–7PubMedCrossRefGoogle Scholar
  16. Farrand, K., Jovanovic, L., Delahunt, B., McIver, B., Hay, I.D., Eberhardt, N.L., and Grebe, S.K. 2002. Loss of heterozygosity studies revisited: prior quantification of the amplifiable DNA content of archival samples improves efficiency and reliability.J Mol. Diagn.4: 150–158PubMedGoogle Scholar
  17. Fleischhacker, M., and Schmidt, B. 2007. Circulating nucleic acids (CNAs) and cancer — a survey.Biochim. Biophys. Acta 1775: 181–232PubMedGoogle Scholar
  18. Giacona, M.B., Ruben, G.C., Iczkowski, K.A., Roos, T.B., Porter, D.M., and Sorenson, G.D. 1998. Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls.Pancreas 17: 89–97PubMedCrossRefGoogle Scholar
  19. Goessl, C., Müller, M., and Miller, K. 2000. Methylation-specific PCR (MSP) for detection of tumour DNA in the blood plasma and serum of patients with prostate cancer.Prostate Cancer Prostatic Dis.3 Suppl 1: 17CrossRefGoogle Scholar
  20. Hanley, R., Rieger-Christ, K.M., Canes, D., Emara, N. R., Shuber, A.P., Boynton, K.A., Libertino, J.A., and Summerhayes, I.C. 2006. DNA integrity assay: a plasma-based screening tool for the detection of prostate cancer.Clin. Cancer Res.12: 4569–4574PubMedCrossRefGoogle Scholar
  21. Hata, N., Yoshimoto, K., Yokoyama, N., Mizoguchi, M., Shono, T., Guan, Y., Tahira T., Kukita, Y., Higasa, K., Nagata, S., Iwaki., T., Sasaki, T., and Hayashi, K. 2006. Allelic losses of chromosome 10 in glioma tissues detected by quantitative single-strand conformation polymorphism analysis.Clin. Chem.52: 370–378PubMedCrossRefGoogle Scholar
  22. Jahr, S., Hentze, H., Englisch, S., Hardt, D., Fackelmayer, F.O., Hesch, R.D., and Knippers, R. 2001. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells.Cancer Res.61: 1659–1665PubMedGoogle Scholar
  23. Jung, K., Stephan, C., Lewandowski, M., Klotzek, S., Jung, M., Kristiansen, G., Lein, M., Loening, S. A., and Schnorr, D. 2004. Increased cell-free DNA in plasma of patients with metastatic spread in prostate cancer.Cancer Lett.205: 173–180PubMedCrossRefGoogle Scholar
  24. Leon, S.A., Shapiro, B., Sklaroff, D.M., and Yaros, M.J. 1977. Free DNA in the serum of cancer patients and the effect of therapy.Cancer Res.37: 646–650PubMedGoogle Scholar
  25. Mandel, P., and Métais, P. 1948. Les acides nucléiques du plasma sanguin chez l'homme.C. R. Acad. Sci. Paris 142: 241–243Google Scholar
  26. Mehra, N., Penning, M., Maas, J., van Daal, N., Giles, R.H., and Voest, E.E. 2007. Circulating mitochondrial nucleic acids have prognostic value for survival in patients with advanced prostate cancer.Clin. Cancer Res.13: 421–426PubMedCrossRefGoogle Scholar
  27. Müller, I., Urban, K., Pantel, K., and Schwarzenbach, H. 2006. Comparison of genetic alterations detected in circulating microsatellite-DNA in blood plasma samples of patients with prostate cancer and benign prostatic hyperplasia.Ann. NY Acad. Sci.1075: 222–229PubMedCrossRefGoogle Scholar
  28. Pantel, K., and Brakenhoff R.H. 2004. Dissecting the metastatic cascade.Nat. Rev. Cancer 4: 448–456PubMedCrossRefGoogle Scholar
  29. Papadopoulou, E., Davilas, E., Sotiriou, V., Georgakopoulos, E., Georgakopoulou, S., Koliopanos, A., Aggelakis, F., Dardoufas, K., Agnanti, N.J., Karydas, I., and Nasioulas, G. 2006. Cell-free DNA and RNA in plasma as a new molecular marker for prostate and breast cancer.Ann. NY Acad. Sci.1075: 235–243PubMedCrossRefGoogle Scholar
  30. Sanchez, Y., Lovell, M., Marin, M.C., Wong, P. E., Wolf-Ledbetter, M.E., McDonnell, T.J., and Killary, A.M. 1996. Tumor suppression and apop-tosis of human prostate carcinoma mediated by a genetic locus within human chromosome 10pter-q11.Proc. Natl. Acad. Sci. USA 93: 2551–2556PubMedCrossRefGoogle Scholar
  31. Saric, T., Brkanac, Z., Troyer, D.A., Padalecki, S. S., Sarosdy, M., Williams, K., Abadesco, L., Leach, R.J., and O'Connell, P. 1999. Genetic pattern of prostate cancer progression.Int. J. Cancer 81: 219–224PubMedCrossRefGoogle Scholar
  32. Schulte-Hermann, R., Bursch, W., Grasl-Kraupp, B., Torok, L., and Ellinger, A.M.L. 1995. Role of active cell death (apoptosis) in multi-stage carcinogenesis.Toxicol. Lett.83: 143–148CrossRefGoogle Scholar
  33. Schwarzenbach, H., Chun, F.K.H., Lange, I., Carpenter, S., Gottberg, M., Erbersdobler, A., Friedrich, M.G., Huland, H., and Pantel, K. 2007. Detection of tumor-specific DNA in bone marrow plasma from patients with prostate cancer.Int. J. Cancer 120: 1457–1463CrossRefGoogle Scholar
  34. Sorenson, G.D., Pribish, D.M., Valone, F.H., Memoli, V.A., Bzik, D.J., and Yao, S.L. 1994. Soluble normal and mutated DNA sequences from single-copy genes in human blood.Cancer Epidemiol. Biomarkers Prev.3: 67–71PubMedGoogle Scholar
  35. Stroun, M., Anker, P., Lyautey, J., Lederrey, C., and Maurice, P.A. 1987. Isolation and characterization of DNA from the plasma of cancer patients.Eur. J. Cancer Clin. Oncol.23: 707–712PubMedCrossRefGoogle Scholar
  36. Stroun, M., Anker, P., Maurice, P., Lyautey, J., Lederrey, C., and Beljanski, M. 1989. Neoplastic characteristics of the DNA found in the plasma of cancer patients.Oncology 46: 318–322PubMedCrossRefGoogle Scholar
  37. Taback, B., Giuliano, A.E., Hansen, N.M., Singer, F.R., Shu, S., and Hoon, D.S.B. 2003. Detection of tumor-specific genetic alterations in bone marrow from early-stage breast cancer patients.Cancer Res.63: 1884–1887PubMedGoogle Scholar
  38. Tan, E.M., Schur, P.H., Carr, R.I., and Kunkel, H.G. 1966. Deoxyribonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus.J. Clin. Invest.45: 1732–1740PubMedCrossRefGoogle Scholar
  39. Vasioukhin, V., Anker, P., Maurice, P., Lyautey, J., Lederrey, C., and Stroun, M. 1994. Point mutations of the N-ras gene in the blood plasma of patients with myelodysplastic syndrome or acute myelogenous leukemia.Br. J. Haematol.86: 774–779PubMedCrossRefGoogle Scholar
  40. Vis, A.N., Oomen, M., Schröder, F.H., and van der Kwast, T.H. 2001. Feasibility of assessment of promoter methylation of the CD44 gene in serum of prostate cancer patients.Mol. Urol.5: 199–203PubMedCrossRefGoogle Scholar
  41. Wang, M., Block, T.M., Steel, L., Brenner, D.E., and Su, Y.H. 2004. Preferential isolation of fragmented DNA enhances the detection of circulating mutated k-ras DNA.Clin. Chem.50: 211–213PubMedCrossRefGoogle Scholar
  42. Wang, Q., Larson, P.S., Schlechter, B.L., Zahid, N., Finnemore, E., de las Morenas, A., Blanchard, R. A., and Rosenberg, C.L. 2003. Loss of hetero-zygosity in serial plasma DNA samples during follow-up of women with breast cancer.Int. J. Cancer 106: 923–929PubMedCrossRefGoogle Scholar
  43. Wu, T.L., Zhang, D., Chia, J.H., Tsao, K.C., Sun, C. F., and Wu, J.T. 2002. Cell-free DNA: measurement in various carcinomas and establishment of normal reference range.Clinica Chimica Acta 321: 77–87CrossRefGoogle Scholar
  44. Yano, S., Matsuyama, H., Matsuda, K., Matsumoto, H., Yoshihiro, S., and Naito, K. 2004. Accuracy of an array comparative genomic hybridization (CGH) technique in detecting DNA copy number aberrations: comparison with conventional CGH and loss of heterozygosity analysis in prostate cancer.Cancer Genet. Cytogenet.150: 122–127PubMedCrossRefGoogle Scholar
  45. Zheng, H.T., Peng, Z.H., Li, S., and He, L. 2005. Loss of heterozygosity analyzed by single nucle-otide polymorphism array in cancer.World J. Gastroenterol.11: 6740–6744PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.Institute of Tumor BiologyUniversity Medical CenterHamburg-EppendorfGermany

Personalised recommendations